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NATIONALADVISORYCON_._mfi_EEFORAF20NAUTICE

TECHNICALNOTE.,NO, 1360

TEE STABII/ OF TEE LAMINARBOUNDARYLAYER

IN A COMPRESSIBLEFLU 

By Lester Lees

The present _aper is a continuation of a theoretical investi-

gation of the stability of the laminar boundzry layer in a com-

pressible fluid. An approximate estimate for the minimum critical

Reynol&s number Recrmin , or stability limit; is obtained in terms

of the distribution of the kinematiC viscosity and the product of

the'mean density p-_ and mean Vorticity du_---across the boundary

layer. Wltil the help of this estimate for Recrn_n_ it is shoma

that _ithdrawing he_t from the fhdd through the solid surface

increases P_Crmln and stabilizes the flo_:, as compared with t_he

flow over an insulated surface et the same_Mach ntunb_r. Conluction

of heat to the fluid through the solid surfac_ has exactly the

opposite effect. The value of Recrmln for the insulated surface

decreases as the Mach number increases for the case of a uniform

free-stream velocity, These general conch_lons are supplemented
by _etailed calculations of the curves of _nve number (inverse

_ave length) against Reynolds number for the neutral disturbances

for lO representative cases of insulated and noninsulated surfaces.

So far as laminar stability is concerned, an important dif-

ference _xlsts between the case of a subssnic and supersonic free-

stream velocity outside the boundary layer. The neutral boundary-

layer disturbances that are significant for laminar stability die

out exponentially with distance from the solid surface; thoa-eforo

the phase velocity c* of those disturbances is subsonic relative

to the _ree-stream velocity Uo* - or uo* - c* < ao_ , whore So*

is the local sonic velocity. When Uo_*__= Me < 1 (_ore Mo is

: aO'_

free-stream Mach number), it follo%_ that 0 < c* < c'max; and eny



NACATN No. 1360

lamln_r boundary-layer flow is 1_timately unstable at mtfficiently

high Reynolds numbers because of the destabilizinc action of vis-

cosity near the solid surface, as explained by Prandtl for the

incompressible fluid. When Mo > i_

If the quantity [_ (_ d_*_]
-_*=c *

C*
however, = > 1 -1 > O.

Uo* Me

is large enough negatively,

the rate at _qich energy passes from the disturbance to the mean

flow_ which is proportional to .c. I'd._ (_ d__*_]d_.]_.=c._can

always be large enou_ to counterbalance the rate at %_ich enersy
passes from the mean flo_T to _e disturbance because of the desta-

bilizing action of viscosity near the solid surface. In that case

o_ly damped disturbances exist and _10 L_mi_mr bo_mdsry layer is

completely stable at all Reynolds numbers. This condition occurs

when bhe ra_e st which heat is _ithdravn from the fluid through
the solid surface reaches or exceeds a critical value that depends

only, on the _ch number and the properties of the gas. Ca].c_da-

tions show _lat for Mo > 3 (approx.) the laminar boundaryqayer

flow for thermal equilibrium - _lere the heat conduction tlmou_
the solid surface bal_nces the heat radiated from the surface - is

completely stable at all Re_molds nt_nbors under free-flight conditions

if the free-streem velocity is unifoz_n.

The results of the _n_lysis of the stability of the laminar

boundary layer must bo applied with care to discussions of transi-

tion; however, _dthdrmwing heat from the fluid through the sol_d

surface, for example_ not only increases Recrmin but also

decreases the initial rate of amplification of the self-excited

disturbances_ which is rou_ohly proportional to l/ "c__r_ n. Thus_

the effect of the the_mml conditions at the solid surface on _e

is similar to the effect on R_crmintransition Reynolds number R_t r

A comparison between this conclusion and experimental investIsmtions

of the effect of surface heatin_ on transition at low speeds shows

that the results of the present paper give the proper direction of
this effect.

The extension of the results of the stability analysis to

laminar boundary-layer gas flows _dth a presstre gradient in the
direction of the free stream is iiscussod.

I
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_ODTJCTION

By the theoretical studies of Heisenberg_ Tollmien_ Schlichting,
and Lin (references 1 to 5) and the careful experimental investi-

gations of Liepmann (reference 6) and H. L. Dryden and ILls asso-
ciates (reference 7)_ it has been definitely establlsh_d that the

flow in the lamlrmr boundary layer of a vlsco'%s hcmogeneous incom-

pressible fluid is m_stable above a certain characteristic critical

Reynolds number. When the level of the disturbances in the free
stretch is lo_,, as in most cases of teclmical interest, this inherent

instability of the lamlnsr mot.__onat sufficiently high Reynclds

numbers is responsible for the _tltin_utetransition to turbulent

flow in the boundary layer. The steady laminar boundary-layer flew

would always represent a possible solution of the steady equations
of motion_ but this steady flow is in a state of unstable dynamic

equilibrit_ above the critical Reynolds number. SeLf-excited dis-

turbancos (Tollmlen waves) appear in the flo_, and thes_ disturb°

ances gcow lar_c enough eventually to destroy the l_minar motion.

The question natla'a!ly arises as to how the phenomena of

l___dnar instability and transition to turbulent flow are modified
_hen the fluid velocities and temperature variations in t_he botu_dary

layer are large enough so that the compressibility _md conductivity

of the fluid can no loncer be neglected. The present paper repre-

sents the second phase of a theoretical investigation of the sta-

bility of the laminar boundary-layer flow of a gas, in _ich the

compressibility and heat conductivity of the _as as _._ll as its

viscosity_ are taken into account. The first part of this work
_s presented in reference 8. The objects of this _ivostigation

are (1) to determine how the stability of the laminar boundary

layer is affected by the free-stream Mach number and the thcrlm-_l"

conditions at the solid boundary and (2) to obtain a better und._r-

standing of the pl_Tsical basis for the instability of laminar gas

flo_. In this sense_ the present stud_r is an extension of the

Toll_en-Schlichting analysis of the stability of the laminer floe-

of an incompressible fluid_ but the investigation is also concerned

with the general quQstion of botmdn_j-layer disturbances in
compressible fluid and their possible interactions _,.Sththe main
exter;_l flow.

S_OLS

With minor exceptions the symbols used in t___.sp_per are the

same as those introduced in reference 8. Pl_,-sicalq_mntities are

3
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denoted by an asterisk, or star, whereas the corresponding non-
dimensional quantities are unstarred. A bar over a quantity denotes
meanvalue; a prime denotes a fluct_ntlon; the subscript o denotes
free-stream values at the "edge"of t_heboundary layer; the sub-
script 1 denotes values at the solid surface; and. the sub-
script c denotes values st the inner "critical layer", _:here
the phase velocity of the disturbance equals the meanflow veloc!ty.
The free-stream values are the choracter!stic measures for all non-
dimensional quantities. The characteristic length measure is the
bo'_nadary-layer thlcknoss 5, except _,_ore othe_.r!s_ indicated.
Note that in order to co___0i_nvlth stand2r_ no_atlon, the sj_nbol 5

for bctu_dary-layer thickness is _,n_starred.,_,_ereas the s_._bols 8-

an_ e are used for boun&_7-1ay_>r displacement thlckcess and

boundary-l,_yer moment'an thic_zaess_ respectively.

x* distance along surface

y_ dlstsnc6 normal to s_rface

t* time

u* component of velocity in x_-diroction

m

U •

°m°

UO*

v* Component of velocity in y*-ddroction

V _t

O=---

UO@

stream function for mean flow

density of gas

pressure of .gas

T _ temperature of gas

T @ l_m!n_r shea2 stress

ordinary coefficient of viscosity of gss

'_ /" #t

|.,_

1
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k_

c V

Cp

R*

W

C+;-

k-x.

5

k_/5

R

R0 =

M o

therm_ ! conductivity Of _s

specific heat at constant volume

specific heat at constant pressure

gas const_]t per _ram

ratio of specific heats (Cp/Cv); 1.405 for air

complex phase velocity of bottndary-layer dlst_bance

-@ave length of boundary-layer dist_u'bance

boundary-layer thicK_ness

boundary-l_yer &ispi_ cement thickness (i

(Io"boundery-layer momc_nt,anthlc_ess pw(l - _-)

_ave number of bo1_ndary-layer disturbance (2_%*)

Reynolds n_mber \- _] . )
\ -o /

_lo*

Mach number

5
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Prandtl mnnber

i. PREL]]_EINARYCONSIDERATIONS

In the first ph._soof this !nvestlg_tlon (reference 8) the
stability of the laminar boundary-layer flow of a _s is _nalyzed
by the method of s_]l pel%urbatlons, which was already so suc-
cessfully utilized for the study of the stability of the laminar
flow of an incompressible fluid. (See reference 9.) By this
m_thod a nonstea_y _s flo_ is !nvesti_ted in _!ch all physical

quantities dlffei" from their values in a ,given steady gas flow

by small perturbations that are functions of the time end the space
coordlnatos. This nonsteady flow must satisfy the complete gas-

dynamic equations of motion and the same bo'_dary conditions as

the given ste:-_z flo_-. The question is whothoz_ the nonsteady flow

d_mps to the stead_v flo% oscillates about it_ or diverges from it

_oth titre - that Is_ _iother the small perturbations are damped,
neutral, or self-excited disturbances in ti1_o, and thus whether

the given steady gas fqow is stable or unstable. The analysis is
particularly concerned _._iththe conditions for the existence of

neutral disturbances, which mark the transition from stable to

unstable flow _nd define the minlmlnn crit_ cal Reynolds munber.

In order to bring out some of the principal features of the

stability problem _._ithoutbecom__ng involved in hopeless mathe-

matical complications_ the s¢lld boundary is taken as two dlmen-

sional and of negligible curvature and the botundary-layer flow is

regarded as plane and essentially parallel; that is_ the velocity

component in the direction normal to the m_face is negligible and

the velocity component parallel to the surface is a function mainly

of the distance nol"mal to the surface. The small disturbances_
_,_hichare also two @l_ens_orml; are analyzed into Fourier com-

ponents_ or nozmml mod es_ periodic in the direction of the free

stream; and the amplitude of each one of these pa_tlal oscillations

is a function of the distance normal to the solid surface_ that

---- ei(:f,u*' -- %* (x-or).

In the study of the stability of the la_!nal_ boundary layer;

it v!ll be seen that only the local prope_vties of the "parallel"

flow are significant. To include the v_riation of th_ mean velocity

in the direction of the free stream or the velocity component normal

I
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to the solid boundary in the problem would lead only to higher order

terms in the differential equations governing the disturbs!cos,

since both of these factors are inversely proportional to the local

Reynolds number based on the boundary-layer thickness. (See,. for

example, reference 2°) By a careful analysis, P2etsch has sho_n

that even with a pressure gradient in the direction of the free

stream the local mean-veloclty distribution alone determines the

stability characteristics of the local boundary-layer flow at

large Reynolds ntmlbers (reference 9). Such a statement applies

only to t_le stability of the flow _thin the boundary layer. For

the interaction between the bo'mudary layer and a main "external"

supersonic flow_ for exr_nplo, it is obviously the variation in

boundary-layer thickness and moan velocity along the surface that
is significant. (S¢o reference lO.)

The aforementioned considerations also load quite naturally
to the stuQr of individual partial osci!latio_ of the

form f(y) oi_(x-ct), for _.Thichthe d_ferontial_ equations of

distln<'banco do not contain x and t explicitly. Those partial

oscillations are ideally suited for the study of instability_ for

in order to show that a flow is trustable it is unnecessary to

consider the most general possible disturbance; in fact the
simplest _.ll suffice. It is only necessary to sho:_ that a

particular disturbalice satisfying the equations of motion and the

botmdary conditions is self-excited or_ in this cast that th_

imaginary part of the complex phase velocity c is positive.

In reference 8 the differential equations governing one

nor_m! mode of the disturbances in the ]_mlnar boundary layer of

a o_aswere derived and studied very %horou_lly. The complete set
of solutions of the disturbance equations _ms obtained and the

physical boundary conditions that these solutions satisfy were
investigated. It was fotuu_ that the final relation between the

values of c, _, and R that determines the possible neutral
disturbances (limits of stability) is of the same form in the

compressible fluid ss in the incompre'ssib!e f!uid_ to a first
approximation. The basis for this rem_/t is the fact that for

Reynolds numbers of'the order of those encountgrod in most acro-

d_auamic problems, the temperature disturbances hove only a neg]igible

off oct on those partictD.ar velocity solutionz_ of :the disturbance

equations that depend prim0rily on the viscosity (viscous solu-
tions). To a first approximation, those viscous solutions there-

fore do not depend directly on the heat conductivity and are of

the sam.o form as in th0 incompr0ssiblc fluid, except that they

involve the Ro_0ids number based on the }dncmatic viscosity near

the solid bo_m_dary (_hero the viscous forces are important) rather

than in the free stream. In this first approz_ilmtlon, the second

7
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viscosity coefficient, __ich is a measure of the dependence of the

_r_ssure on the rate of change of density, does not affect the sta-

bility of the le_ni_mr bo_undary layer. From these results it ,_as
inferred that at large Reynolds m_nbers the influence of the yiscous

forces on the stability is essentially the same as in an incom-

pressible fluid, This inference is borne out by the results of the

present paper.

The influence of the inertial forces on the stability of_the

laminar boundary layer is reflocte_ in the be_hay!or of the asymp-

totic inviscid solutions of the disturbance equat!ons_ which are

independent of Reynolds number in first approximation, The results
obtained in r_ferenco 8 show that the behavior of the inertial

forces is dominntod by the distribution of the product of the moan

density and moan vorticity 0d_ across the bound2ry layer. (The

.quanti_y, or _y)_ which plays the same role
gr._dient of this " '_ d /d-_

es the grsdient of the vorticity in the case of sn incompres_.iblo

fluid, is a measure of the rate a.t _,ich the x-momcntt_n of the

thin layer of fluid near the critical layer (_ero w = c)
increase% or decrease% becmtso of the transport of momentum by

the disturbenco.) In order to cl_-ify the bohavlor of the inertial

forces, the lirlitinG case of an inviscid fluid (R--_._) is studied
in detail in reference 8. The folloving general criterions arc

obtained" (1) If the qunntity d /dw_ vanishes for some value

- 1
of w > I - _, then neutral an0_ se!f-bxeitca subsonic distt_rbo

Me- ..

ancos oxist and the invlscid co_gressible flo_.r is -_stablo,
a / d,,,\

(2) If the _u_ntity _vtp_] does net vardsh for some va!uo

of _ > 1 - _ then all subsol_c disturbances of fi-nite _,mVO
M o'

icn._th are d_mpod a_ the inv!scid comprossib!o flow is stsble,

(0utsido the boundary layar; the relative velocity between the mean

flow and the X-componen_ of the phnso v£1ocity of a subsonic dis-
turbance is loss th,_n tlm mean sonic velocity. The ma_t_de of
such a distv_bsncc dies out o___onential].y _th distance from the

solid m,rfacc.) (3) In g0noral_ a disturbance;_ins oncr_ from

the me,an flo'._if d__/dv\ is positive at thu critical Inyor

(whore v = c) _nd loses oner_" to the morn_.flow if pdw <0.

._=-C

8
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p-

The general stability criterions for inviscid compressible
flow give some insi@zt _ntc the efxect of the inertial forces on

the stability, but they cannot be taken over bodily to the real

coz_pressib!_ fluid. Of coursej if a flow is unstable in the

limiting case of an infinite _eynold_s nt_nbor, the flow is unstable

for a certain finite range of Reynolds ntm_er. A compressible flow
that is stable when R--, _, hog,ever, is not necessarily stable
st all finite Reynolds numbers _en the effect of viscosity is

taken into _6omt. One of the objects of the present paper is

to settle this question.

On the basis of the stability criterions obtaine_[ in refer-

cnce 8_ some general statements _¢ere made conce_ing the effect of

the__mal conditions at the solid boundary on the stability of laminar

botundaz-j-layor flow. It is concluded -,"romp]_slcal reasoning and

d/ w\
a study of the eq,_tions of moan motiou t_hat the quantity _y_p_y;

heat is ad___d to the fluid t]iro_i the solid surface or if the
__\I72.

sttrface is Insulsterl, If _.---v)> 0 and is sufficiently large,

that is_ if heat is _.thdrawn from the fluid through t_e solid

/ dw\_ ",_
surface st a sufficient rate, t_e quantity &_- p n0_er vmnishes. !,gi

- "
bilized by _he action of the inertial forces but stabilized

through the inorense of kine.matic viscosity near the solid surface,

_.lhen > O, the reverse is true. The question of which of

these effects is predominant can be answered only by fu_ther study

of the stability problem in a real comPressible fluid.

In the present paper this investigation is continued along the
fo!lo_ing lines: • '

(1) A study is made of how the genera3] 6_-iterions for insta-

bility in an inviscid co-repressibleflui& ore modified by the

i_.troduction of a ,small viscosity (stability at V._;rylarge
R'eynolds numbers). _.'_ .

9
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(2) The conditions for the existence of neutral disturb-

antes at large Reynolds number are examined (study of asymp-

totic form of relation between eigen-values of c, m, and R).

(3) A relatively simple expression for the approximate
value of the minimum critical Reynolds number is derived_

this expression involves the local distribution of mean
velocity and mean temperature across the boundary layer. This

approximation willserve as a criterion from which the effect
of the free-streamMach numbef and thermal conditions at the

solid surface on the stability of laminar boundary-layer flow

is readily evaluated. The question of the relative influence

of the kinematic viscosity and the distribution of _ on

stability would then be settled.

(h) The energy balance for small disturbances in the real
Compressible fluid is considered in sn attempt to clarify the

physical basis for the instability of laminar gas flows.

(5) Yn order to supplement the investigations outlined

inthe four preceding paragraphs, detailed calculations are

made oft he limits of stability, or the curve of m against R

for the neutral disturbances for several representative eases
of insulated and noninsulated surfaces. The results of the

calculations are presented in figures I to 8 and tables I

to IV. The method of comp_ation of the stability limits is

briefly outlined in reference 8, although the calculations

were not carried out in that paper.

In the present investigation the work of Heisenberg (refer-

ence 1) and Lin (reference 5) on the stability of a real incom-

pressible fluid is naturally an indlspensable guide. Yn fact, the
methods utilized in the present study are analogous to those

developed for an incompressible fluid.

The present paper is concerne d only with the subsonic disturb-
ances. The amplitude of the subsonic disturbance dies out rapidly

with distance from the solid bolmdary. In other words, the neutral
subsonic disturbance is an "elgen-osci!lation" confined mainly to

the boundary layer and exists only for discrete eigen-values of c,

_, and R that determine the limits of stability of laminar
boundary-layer flow. Disturbances classified in reference 8 as

neutral "supersonic," that is, disturbances such that the relative

velocity between the x-component of the phase velocity of such a

disturbance and the free-stream velocity is greater than the local

mean sound speed in the free stream, are actually progressive sound

i0
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waves that _tmplngeobliquely on the boundary layer and are reflected
with changeof ampllttml_. For disturbances of t_is type the wave
length m_d phase velocity are obviously completely arbitrary (elgen-

values are continuous), and these disturbances have no si_aiflcance

for boundary-layer stability.

When the free-stream velo_-ity is supersonic (M o > i_, the

subsolZc boundary-layer disturbances must satisfy the requirement

c* < or c > 1 1 (for Mo< l, c > 0). Now,
that u°* " a°* - M =

o

by analogy _th the case of an incompressible fluid it is to be

expected that for values of c greater than some critical value of Co,

say, all subsonic distua_bances are dampe_. Thus_ when Mo > i,

there is the possibi].ity that for certain mean veloclty-temperature

distributions across the boundary layer, neutral or self-excited _

dlstua_bances satisfying the differential eqtu_tlons of motion, the
1

boundary conditions, and,also, the physical requirement that c > 1- _-
Me

cnnnot be folmd. In that event, the laminnr bounda_ flow is stable
at all P,eynolds numbers. Thi_ interesting possibility is investi-
gated in the present paper.

2. CALCULATEON OF T_._ L_,_T.S OF STABILY__Y OF TEE LAI_'AI_

BOU_'_DARYLAYER ]}IA VISCOUS COI'_]_JCT!VEGAS

Yz order that the complete system of solutions of the differ-
ential equations for the propsgation of_small disturbances in the

lemlnar bouzdary layer shall satisfy the physical boundary condl- ,,

tions, the phase velocity mu._t depend on the wave length, the
Reynolds numbor_ and the _ch number in a manner that is determined

entirely by the local distribution of moon velocity and mean tempera-

ture across the boundary layer. In other words_ the only possible
subsonlc disttu_bances in the laminar boundary layer nro those for

_ich there exists a definite relation of the form (reference 8)

o@, Mo2) (2.1)

Since _, R, and Mo2 are real quantities, the relation (2.1) is

equivalent to the two relations

ll
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cr = Cr(_ , R, Mo2 ) (2.m)

oi= c±('a,,_, Mo2) (2.1_)

The ctu-ve ci(m , R, Mo2) = 0 (or _= 4{, Mo2)) for the neutral

disturb.muces gives the limits of stability of the laminar boundary

layer at a given value of the ]:_ch ntm_er. From this c1_ve can be

determined the value of the Re}u_olds numbs' below wkich dlst_.b_nces
of all wave lengt.hs are damped and above which se_-f-exclted disturb-

ances of ce_aln _mve len6ths appear in a given l_,_mlnarboundary°
layer flow.

In reference 8, it is sho_ t,bat the rel_tlon (2.1) between

the phase velocity and _he wave len.zth takes hb.e follo-__._gform:
}

In equation (2.2), F(z) is the TietJens function (reference ll)

defined by the relation

_hero

. _31_._._/(J.) _ _. .
F(z) = I + L.... -_._, ,

j3.,. Z

_.. z ._ !!3 0 J

(2.3)

'3z= (,_o-yl) (2._.)

and the qua.ntity Hl/3(1) is tho Hankel f_mction of the first kind

of ordor 1/3. Tho prime denotes differentiation with respect

y. The f_tucti0n E(_,--c, Mo2), _,_ich &opends only on theto

12
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asymptotic inviscid solutions _I and _2 (section 4 of refer-

ence 8) and not on the Reynolds n_mber, is define& as follows:

_ii _12' + _12

_21

TI - Mo2C2

TI_21' + Mo2WI'C_21

TI Mo2C2

q)22' + 13('°22

_12' + _12

922' + 13922

(2.5)

where

ij J --i_ 2

an& Yl and Y2 are the coordinates of the solid surface and the

"edge" of the boundary layer, respectively.

The TietJens function was carefully recalculated in reference 8,
i

and the real and imaginary parts of the function _(z) =
i - F(Z)

are plotted in figure 9. (The function $(z) is fotmd to be more
suitable than F(z) for the actual calcu]2tion of the stability

limits, )

The inviscid solutions _i and _2 _re obtained as power

series in m2 as follows_ection 6 of referonce 8):

13
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(2.7)

O@

z_O

(2.8)

where for n > 1

h_o(,,c,Mog° ,-_,)__ '1'
I 1 ! |

!
(2.9)

an&

and for n_l

h = 1.O
O

(2. io)

and

k,(_,o,,,o9_ T Mo2_
. c)2

1

The lower limit in the integrsls is taken at the surface merely

for convenience, _len y >yc_ the path of integration must be

taken belo__._wthepoint Y = Yc in the complex y-plane. The power

series in m2 are then uniformly convergent for any finite value

of _.

14
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At the surface, the inviscid so!ut_ons are readdly evaluate&

q_ll == -c

!

q°ll = _i'

(_21 _;0

, i_ ..22h= --- -M 0 O')(I)9_1 O 1

At the "edGe" of the boundary layer_ the Invisci& sol_itions are

most convoniently expressed as follows:
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where

HO= 1.0

Ko = 1.0

. (oWith the aid of equations (2.11), t_e expression for E ; c;

can be rewritten as follow,s:

1

E(m_ c, Mo2) = _+ k(c)

where

_'(_2'+_t_)

'{'q_ ' + _q)22) TI "

c - Yl
_(o) _ ------ - i

C

(2.14)

(2.15)

The relation (2.2) bot_een the phase velocity and the _mve length

is brou_it into a form more suitable for the cslc_J&ation of the

stability limits by making use of the fact that for real values

of c the imaginary part of E(c_ cj Mo 2) is contribttted largely

i6

I
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J

by the integral KI(C , Me2). (The procedure to be followed is

_.denti_al with that tme_ by Lin in the lim.itin6 case of
the incompressible fluid (reference 5, part Ill).) Define the

function '_(z) by the reletion

1
$(_)_ (2.16)

Then,

_here

(_.ls)

vl'c 22

u + iv = I _- T 12

Equation (2.17) is equivalent to the two real relations

(1 + k)V

el(Z) = (z + _u)2 + _2v2

(2.z8)

(2.z9)

[',_(z + _,,_)+.__2 I (2.2o)

The real and _naginary parts Of _(z) are plotted against z in
figure 9.

The dominant term in the i_nginary part of the right-hand side

of equation (2.18) _ _ich involves K ! _., Mo2"_, is extracted by means

of straightfor_,_rd c_].gei_r_Ictr_nsforms,tions. Reletion (2.18) becomes

]-7
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Mo2)I.P.Ki(o,
_4_ r_./_"\1

.,_ ---- [_.[.-)J,.
(_c')_ .']_w_:...

:_ (_o')--_bT"C"j

Now k(c) is cenerally quite small_ therefore _i(z) cm_ be

taken equal to v(c) and _.r(Z) cau be tak_ eqt_.l to u as a

zeroth apl_oxlnu_tion, From equations (2.19) _,nd (_,20), _i13n ¢

is real

o,co)(,(o))
"_ (_')--_t_' _'o/

_(o)-_%.(o)(_(c;;) (2._)

By equation (2.24): z(0) is related to c _th the e'Id of figure 9;

and by equation (2.25)_ u(0) is also related to c. T_.e quantity _

is connected with c by means of the identity

_=-- _,oL- (,,,,\3z,,
_:c,(1+ )_)3 _--/

(2.26)

and the correspon_ing values of _ are obtained _rom equation (2.21)

(sli_itly transformed) by a metho_ of succ_sslve appro_nation_.

19
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Thus,

where

_ _I C

L -.

T].

.... _.p. +

(The symbols Mk and Nk now desiLnats the real parts of the

integrals Mk _nd Nk.) ,The itersti0n p=_occss is begun by taking

a suitable initial value of m on the _ ;_+ "'_ side of equa-

tion (2.27). The methods adopted _<r computing t:_eso inte_/rals

when the mean velocity-temperstlt_e profile is I_o_n% are described
in appendixes A to C.

For greater _ccuracy_ tho. wlues of z and. u for a _ven

real value of c are computed by successive approxir_9tions. From
equations (2.19) and (2.20)_

(2.z7)

Oi(_,-l)(z(n+l})= -- (l+ _}_, (2._8)

u(n+l) : Or(n+l)(z(n+l) ) C1 + ku(n)) + %2.,2

•

kv 2

i + xu(n)

(_.'_9)

The value of v is always approx._nated by relation (2.24).

curves of wave number _aga%ns_ Reynolds number for the neutral

disturbance have been calculated for lO representative cases

(fig. 4)_ that is, insulated surface at M_ch numbers of O, 0.50 ,

0.70, 0.90, 1,10, and 1.30 and heat trs_sfor across the solid surface

2O
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at a Machnumberof 0.70 with values of the ratio of surface tempera-
ture to free-stream temperature T1 of 0.70_ 0.80, 0.90, and 1.25.
(It is found more desirable to base the nondimensionsl x.mvenumber and
the I_eynolds numberon the momentumthickness 0, _ich is a direct

measure of the skin friction, rather tlmn on tilebo_mda_y-l_yer thick-

ness 8, which is som_at _definite.)

In figure 5 the minimt_ critical _e_aqo!ds nu]nber R0 , or the
crmin

stability limit, is plotted against Mmch number for the insulated

surface; and in figure 6(a) POcr_.n is plotted against T1 for

the cooled or heated surface at _ _ch number of 0.70. The m_rked
staLilizing influence of a -,rlth_ra_dlof hent from the flu3.d is

clearly evident. Discussion of the physical si_ificance of these
numerical results is resel'ved tu_til after general criterions for

the stability of the la_ir_r bo_m@_rv l_yor have been obtained.

3, DF_,qTABILIZI_G I_LO_[CE OF VISCOSITY _S VERY LA_OE K_OLDS

h_0_S; Ii_;S/0N OF EEI'2_IR_'S CRITE_ION

TO _ COkqP_SS.r_IZ FLUID

The numericcl calculation of the limits of stability for several
particular cases _ves soz_ indication of the effects of free-stream
Mach number and therm_l conditions _t the s_-qll surface on the sta-

bility of the laminar bound_ry layer, it wotuld be very dosirable_

however_ to establish general criterions for L_mdnar instability.
For the incompressible fluid, Heisonb_rg has shown that the influence

of viscosity is generally d_stabil!z_ at vetV lnrge Ro.Tnolds
numbers (reference 1). Kzs c-_r_on c_nbe stated as follows: If

a neutral dlsturbanco of nonw_nishing phase w_locity and fin_ire _mve

len6_h exists in an inviscid fluid (i_--.,_) for a given moan velocity

distribution, a disturbance of the say,o_rave lonsT_ is _mstable, or
self-excited, in the real fluid at very ]largo (but_Ufinlto) Re_molds
numbers.

The same conclusion can be dra%._ from Pr.andtl'sdiscussion of

the enor_ balance for small dist_n'bances _'n the la:_nar boundary
layer (reference 12).

Heisenberg's criterion is ostabli._hed for subsonic C_isturbances

in the laminar boundary layer of a compressible fluid by an argument

quite similar to thdt which he gave origina].ly for the incompressible

fluid and which was l_ter supplemented by Lin (roforc_nce 5, part III).
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At very large Reynolds ntunbers, the relation (2.1) between the phase
velocity and the _mvelength can be considerably simplified, 'When k
is finite and c does not vm_sh_ I z! >> 1 at large Reynolds
numbers. The esymptotic behavior of the TietJens ftmction F(z)

as _zi---)_ is given by (reference 9, part I)

,_Ipr.

V i]C

(3._)

and the relation (2.3.) becomes

• _!Ik
(3.2)

_erer(_,o,Me2) is_venb_.o_tio_(_.l_'O.

Suppose that a neutral disturbance of nonvanishing wave

2_ and phase velocity cs > 1 - --1 e_.sts in t.l_enumber ms = ---
ks M

O

_Inviscid fluid (limiting c8so of an lhfinlte, Rc._u_oldsnumber). The

phase velocity c .is a continuous fu_ction of, R, and for a dis-

turbance of given rave n'anbor _s the w).ue of c at very large

Reynolds ntu_bcrs will differ from cs by a s_[_].],increment _c.

Both sides of equation (3.2) can be developed in a Tuylor's series
in L_c: and an expression for Ac can be obtaine_ as follows:

7d14

° g oc_l]

_ -Z-- c
Ucs s

22

_C + . , °

(3.3)
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The boundary condition

_ (%,oo,Mo_0o_(%,%,_o0:o (3._)

must be satisfied for the inviscid neutral _Listurbance, and the

El(ms, cs. Me 2) vanishes (equation 2.14). Recognizingfunction

that

\_°/Cs,% I_ s
V CS "

reduces equation (3.3) for _c to the fol_n

,_i/_
-e (3.5)

From equati on (2.14),

T 1

23

(3.6)
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and the expression for _c is

Evaluation of the integral K 1 (c, M#) yields the follo%_ng result:

(3.9)

(3.zo)

Since the quantity Fml.__.(v_'_l vanishes (reference 8),

L_
\T/J_c s

entiation of equation (3.10) gives

differ-

[(,,o,) °°
- /C=C s . .

(3.ll)

#

Thus, K_'QCs,/ Mo2 )" is appro_.mately real an& positive for s_ll

1

values of cs. With cs > 1 -_-, I.P. &c _0.ct also,_ be positive
O

(equation (3.9)); therefore_ a subsonic &Isturbance of wave

length ks / O_ _hich is neutral in the inviscld compressible

fluid, is self-excited in the real compressible fl,dd at very large
(but finite) Reynolds numbers.

o5
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In reference 8, it _ns proved that a neutral subsonic boundary-

layer disturbance of nonwmishing phase Velocity an& finite w_vo

length exists in _n inviscid compressible fluid only if the quan-

tity

condition is sat.isfied_ then self-excited subBo.uic disturbances
also exist in the fluid; nnd the l;:mi:mr bounda1_- layer is unstable

in the limlting case of an infinite Reynolds n-anbor. By the exten-

sion of Hoisonberg's criterion to the c__mressible fluid, it can be

seen that, far _r.om stabi]izinc_ the flo_5 the anmll viscosity in

the real. fluid has, on the contrary; a d_stabilizins i.n/'l,_ncoat

very large R_nol&s numbers. Thusj any lam_mnr B-E1mdary-_ayor flo_r
d Id A

in a vlscot_ conductive g_s for _-.hichthe q,,ntity :tP_.) vanishes

i
for some value of w > I ---- is unst_,blo at s_ficiently hl _ (but

%
finite) Reynol_s numbers.

Unless the condition d /d_,_ 0 for some value of w > i i

is satisfied, all s::_on.ic dist:_b_nces of finite _vo !en b_h _re

damped in the limitin<_ cnse of infinite Re_molds number, and the
inviscid flow is st;_b].o. Sincu the off oct of viscosity is des-

tsbilizin_ nt very ].argo Re_melds numbers, ho_ovor, a lamizmr

boun _dary flow th_,.tis stable in the limit of infinite Reynolds
number is not necessarily stable _t larze Ro__.noldsnumbers %_en the

viscosity of the fluid is considered. (See fig. 4(i).) In fact_

for the Incompressible fl_id, Lin ires sho_._ that evenly lamlnmr

boundary-layer flow is unstable at stu_flciontly high Reynolds

n_bers, _othor or not the vortlcity ._mdicnt --d2_'_vanishes (refer-

once 5, part T!'I). In order to settle this question for the com-
pressible fluid in general terms: the relation (2.1) between the

complex phase velocity and the _mve lon.,_h at lares P,o_n_oldsnumbers
a I a_\

must now be studlod for flows "in_._iicllthe quantity _tP_y) does

1
not vanish for arkv value of w >l ----.

Me

_6

ii
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4. STAB_ OF LAM_D!R BO_A_RY Y_ AT [_GE _IOLI)S _K_S

The neutral subsonic disturbance marks a possible "boundary"

bet_.._enthe damped and the self-excited distt_bance, that is,

bet_een stable and unstab.!e flow. Thus, the general conditions

under which self-excited disturbances exist in the laminar bo%uudary

layer at large Reynolds numberscan be deter_ine_[ from a study of

the behavior of the curve of m against R for the neutral /

disturbances. _nlen t1_emean free-stream velocity is subsonic QMo< 1),

the plkvsical situation for the subsonic disturbances at large

Reynolds numbers is quite simil.ar to the analogous situation for

the incompressible fluid. The cua_ve of m a_nst R for the

neutral disturbances can be expected to have t_¢o distinct asymptotic

branches that enclose a re_%on of instability in the m,R-plane,

regardless of the local distribution of moan velocity and mean

temperature across the belinda17 layer. When the mean free-stream

velocity is supersonic (Mo > ].) the s.itt_utienis somewhat,_dif-

ferent; trader certain conditions (soon to be defined) a neutral

or a self-oxcltod subsonic disturbance > 1 - cannot exist

at any value of the Reynolds num_ber. For this reason, it is more
convenient to study the case of subsonic and supersonic free-stream
velocity separately.

a. Subsonic Free-Stream Velocity (M o < i)

The asymptotic behavior at large Reynolds numbers of the curve

of .m against R for the neutral _!stt_bances is determined by

the relations (2.19) to (2.22) botvoen _ R, and c for real

values of c. For s_nll values of _ and c, those relations
are given approzdmntoly by

v(c) = $i(z) = _Wl'C Tc2 [d _w'_]

u = Cr(Z)
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: 1 C)2

T1 u

As R--_, either z---_ _ or z remmins finlto _lile

both m and c approach 0. These two possibilities correspor.d

to two as_nptotlc branches of the curve of _ against R.

_!_r branch.- if z remains finite as R-->_, then c--90;

and by equation (4.1)_ $i( z) --->0. Therefore; z-->9.29 while

u-->2.29 (fig. 9). From equations (4.3) an& (4.4)_ along the

lo_er branch of the curve of _ against R for neutral stability

k
Tll. _[_ m.

(4.9)

TI
c = 2.29 ----_---- m

%rl'_'i. Mo2

end m--# 0 at large Reynolds numbers (fig. 4(%) ).

Upper branch.- Along the upper branch of the curve of

a@_inst R for neutral st_bility_ z --->_ an_

n-_ltc
el(z)= .

T1

Tc2 1 w1 '

V

28
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while u--_l.O (fig. 9 and oqu_tion (4.2)). If the quantity dy\T/

does not vanish for az4yvalue .of w _ 0, then by equation (4.7)

c musTapproach zero as z--_. ,%long this branch,

I
(4.8)

T 1
C k _- , (4.9)

and _..,-@0 at large Re3u_olds numbers (fig. t,(l)).

the other hand, fff _,, -- _ for _ome value

of w '=.cs _0, then by eqtmtion (4.1), c --->% an& m---_%

as _ z and R approach _. No-#%

cc,[r_q -_ , ,_._-

If _oes not vanish (see appendlx D): th_n by eoN-

L_/Jl
tions (4.5) and (4.7), a!onc the upper branch of the curve of

ac_alnst R for the neutral disturbances,

o

f
( _-_-, ],.0)

29
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(w1,)8

2,2T10.24

1 1 1
(!u_)

___1._1.Mo2(__ c)2 (t,.12)

and c--_c s _ O, _z--_¢ 9 / 0 at large Reynolds numbers,(flgs. 4(k)

by

2(Wl ,)i0 I I 1

w, (0 -oo9
(4._3)

which reduces to the relation obtained by Lin in the limiting case

of _n incompressible fluid t,_en Mo---_0 _ the solid boundary is

Insulate_and _' = 0 for some value of w = cs > O. (See equa-

tion (12.22) of reference 5, part !II.)

If the quantity dyd--(_l vanishes at the s°lid b°undary(that--

!s_ for w = 0), it can be sho_ from the eqt___tionsof motion

(appendix D) that is al_cays positive - except in the

\T/J_
limiting case of an incompressible fluid. For small values of y,

the quantities d Cg_ and w'
d-_Mr/ _- are both positive and increasing.

3O

I
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W !

For large values of y, however_ T----@ O_ physically; there-

wfore -- must have a maximum> or =_0 for some value
m I

of w > O; and this case .is no different from the _neral case
treated in the preceding paragraph, l_ the limiting case of an Incom-

e2

pressible fluid; when _" vanishes at the surface, w "= Wliv----_-

since wI' " always vanishes in this case. Frc_n equation (4.8)

the relation between @ and R along the upper br_:nch of the

neutral stability curve is therefore

/ ivh - io
(4.110

which is identical with equation (i_,19) in reference 9, part III.

Thus, re_rdless of the behavior of the quantity d-_kT-] "

regmr_c_less of the local ddstribution of mean velocity and mean

temperature across the boundary layer - when Mo < l> the curve
of _ sgalnst R for the neutral dist,_'bances has two distinct

branches at large Reynolds n_nbers. _om p]o'sicnl consia__rations,

all subsonic dist,a'bances must be dsm_ed _len the %_ve length is

sufficiently _!l (_ l_rge) or the Reynolds ntunber is sufficiently
low. Consequently, the two branches of the curve of _ a_inst R

for the neutral _istm_bancos must joi:_ evontuhlly_ and the re,on
bstween them in the c,R-plane is a region of instability; that is#

at a _ven value of the l_o_olds number, subsonic disturbances vlth

wave lengths lying between two critical values kI and k2 (a1

and _2) are self-exalted. Thus_ when M o < i; shy ].a_Insr

bgot_n_gr_rji=l.aDigrflow in a viscous conductJwe _as is _m_stablo at

The lower branch of the ctu_v_ of _ against _ for the neutral

disturbances is virtuallo- unaffected by the distribution of d_ ¢_j']

across the bom_dary layer, but for the upper branch the behavior of

31
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the quantity _y is decisive. When _y = 0 for scme

value of w = cs > 03 the neutral subsonic disturbance passes
continuously into the characteristic inviscid disturbance c = cs
and _ = _s as R--._. This result is in accordnnce with the
resttlts obtained in reference 9 for the inviscid compressible fluid
_nd is in agreement with Heisenberg's criterion. In addition,
all subsonic dist1_rbsnces of finite wave length k > k s = _.-2_(and

as

nonwnishing phase velocity 0 < cr < Cs) are self-excited in the

limiting case of infinite Reynolds number. On the other hand,

when md (w/')does not vanish for _ny value of v> O, then

f__%

dy \T/ "_
except for the "singular" neutral distt,_bance of zero phase velocity
_nd infinite wave length (c = 0 and _ = 0)_ all disturbances

are damped in the inviscid compressible fluid. This singular

neutral disturbance can be regarded as the limiting cese of the
neutral subsonic disturbance in a real compressible fluid as R---)_.

b. Supersonic Free-Stream Velocity (Mo > l)

When the velocity of the free stream is supersonic, the sub-

sonic boundary-layer distt_bances must satisfy not only the differ-

ential equations and the boundary conditions of the problem but
1

also the physical requirement that cr > 1 - --. The as_nptotic
Mo

behavior at large Reynolds numbers of the curve of _ against R
for the neutral subsonic disturbances is detertuinod by the approxi-

mate relatlons (4.1) to (4.4)_ _dth the additional restriction
1 •

that c > 1 1 As c---)l ---, _--,0 by equation (4.4);
" M"_", M °

therefore R--@_ by equation (4'3). The corresponding value (or
values) of z is determined by eqlmtion (4.1) es follo_:

Oi(z)--v(c)=v ..... •

M o

32
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Eow frcm physical considsrations, _v < 0 for large

(o_n_essi_) _o_somevalues of
\,i,)

value of _= c s > 1 _ 1.., then, in general, > 0
LClY T i

, /

_ oIk_J i <o (oquntion (4.15)).

c=!---

Me

_h-om fiiTure 9, it csn be

M0
seen that in this case there is only one value of z (zl, say_

corresponding to the value of _i(z) given by equntion (4.19)$

From eqtuqtlons (4.2) to (4.1.i),along the lo/._/ brstnch of the curve

of _ against R for the neutral &!sttu,bences,

Tll'76(Wl') 2z13 1

.S?" 14o/

(4.16)

" '
_ _ O - -

TlU 1

1
c--91 - --- at large Reynolds numbers (fig. 4(k)).and

Mo

branch of the crave in this case f.s _von by equations (4,11)

and (4.12), or by equations (4.13) and (4.12) if '_--_
1

1
v_nishesj with c---)c s > i - -- and c_--)_ s _ O.

Mo

The upper

33
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If --d vanishes for w = I - --, thon z---_ as

dy Mo

along the 13pper branch of the curve of m against R for the

w1'
neutral disturb_ices, and _i(z)--_-- . Now _---_0

V2_VT c
i v c

as C----_I - M7 in this case also (equation (4.17) with uI

so that

= I.o)

2('_%')12 _o2 1 l
(_..18)

Alons the !o__m_rbranch of the curve of m against R at large
Reynolds numbers, _ E, and c are corm.ected by eq_mtions (4.16)

and (4.17), _dth zI = 2.29 and uI = 2.29. Lu spite of the fact

d _w'_ i

thmt _-7 = 0 for w = ! -<, a neutral sonic disturbance

\ u/

fluid unless KI(C) = 10_[_wT-------- { 2 ]_ c)2 - _o dy is positive. (See

section l0 of reference 8.) Calculation sho_ that Kl(C) is almost

always negative (equation (3.11)); therefore, in general, the sonic

disturbance of infinite wave length (m= 0) with constant phase
across the boundary layer exists only in the invlscid fluid (R--, _).

If dy

is certain that

i
does not vanish for any value of w> I - --,

--" M°

W=C=I" --
Mo

it

34
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f _

>o.Whenv 1 <0.580(a prox.),therearet_
cl l_ 1-_

Me Mo _ ..

values of z (z2 and z3, say s ._{ith z3 > z2) corresponding to

the value of _i(z) given by equation (4.15), (See fig. 9.) _long

the two asymptotic branches of the curve of _ against R fo_. the

neutral disturbances, _ R, and c are connected by relations
of the form of equations (4.16) and (4.17), with z and u replaced

by z2 and tt2_ respectively, along the lower branch and by z3

and u3, respectively, al0n_ the upper branch. At a given v_lue of

the Mach m2nber_ the value of v is controlled by the thel_nal condi-
1

1-_

Me

tions at the solid m_rf_ce. (See secti_m 6.) When these conditions are

such that v 1 = 0.58% then z2 = z3, and the t_ e_s_nptotic branches

M
O

of the curve of _ against R for the neutral disturbances coin-

cido. _rhen Vl.1 ___0.580 (approx.)_ it is impossible for a

Mo

neutral or a self-excited subsonic disturbance to e_dst in the

laminar boundary layer of a viscous conductive gas at any value of

the Reynolds number. In other words_ if v 1 >__0.580 (approx.),

Me
the lamlna2 'oounasry layer is stable E_t _Ii values of the Reynolds
number. (Of cetu"se_ in any given case, the critical conditions
beyond which only damped subsonic disturbances exist can be cal-

culated more accurately from the relations (2.2°) _nd (2.29).

See section 5 on _inim_ critic_l R_ynolds number. )

The prece_dng conclusion can also be deduced, _t least qualit a-

tively, Ik_am the resvlts of a stu_ of the on6r_ balance for a

neutral subsonic disturbance in the lazin_r boundary !ayor. A

neutral subsonic disttu_bance can exist only -_hen the destabilizing]

effect of viscosity near the solid surface, th_ damping off_ct of
viscosity in the fluid_ and the energy transfer be:_%_en moan flow

and disturbance in the vicinity of the inner "critical layer" all

balance out to give _ zero (average) net rate of ch_n_e of the

energy of the disturbance. (See Schlichting's _zLscussion for
incompressible fluid in reference 4. ) Y_ reference 8 it is sho_

that the sign and mn<_nitud_ of the phase sl_ift :hq u*' tPmough

the inner "critical layer" st w = c is determined by the si@_
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and msgnitude of the quantity LdY \T /Jw=-c '

apparent shear stress Tc* = -p* u*'v*', which is zero, for _r< c. ,in the

inviscid compressible fluid_ is _ven by the follo_d_u_ expression

for w> c (refe1_nce 8).

• - ' 2 _ /L_,_ ¸-- mc . ,a." w'

If the quantity d is ne_tlve, the mean flow absorbs

?@ C

energy from the disturbance; if is positive_ ener_v

_,_ C

passes from the mean flov to the disturbance. Yz the real corn- -
pressible fluid, the thickness of the ir_er critical laye _,"in which

1

the viscous forces are important is of the or,der of /. R'\!/3t- andt
the phase shift in u*' is act_£11y brott_!t o,bot_t by the effects

of viscous diffusion (of the quantity pa-E_ through, this layer.

As sho_,m by Prau_tl (reference 12)_ the dests,bilizing effect

of viscosity near the solid swrface is to shift the phase of thQ

"friction21" component Ufr*' of the d__,t._b,.<nceVelocity a,gminst

the phase of the "frictior,less" or "invlsci_" cc_pon_nt Ulnv*'

in a thin layer of fluid of thic__ess of the order of _ 1

is of theBy continuity_ the associate& no._._m_lcomponent v *'
, fr

order of

I1
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reference 8, that for large values of _2 the "frictional"

components of the disturbance also satisfy the, continuity rela-

tion _tl*' " _V*' • " •"---.+ = _0 in the compressible flui&, 1 The'corre-

sponding apparent shoar stress Wl* = -Pl* u*'v*' is _iven by the

expression

o-0o
T1

o L" o ,qlll c_
_ _ _ 101

(4.2o)

But from equations (2.11)

u_I\o 4 I T1
q021'

T1 - Mo2C2

T 1

C

(4.21)

and

(_.22)

Since _e shear stress associated _ the des_bilizing effect
of viscosity near the solid s'_face a_ the sheo_ s_ess near the

critical layer act foully t_-ou_o_ the same r6_on of _e fled, the
_h i.i

ratio of the rates of ener_ transferred prox_ately T_ _

by the two p_sical processes is
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_here _

1 z3/2

(<23)

c3
Z 3 _, _ ....

If the quantity _ is negative and s_fficient!y large

when w = el, say, then the rate at _.icl_ oner_T_ is absorbed by

the mean flo_J near the i_er "critica]. layer" plus the rate at _qich

the energy of the disturbance is dissipate& by viscous action more
than cou_uterbalances the rate at which enorsy passes from the mean

flow to the disturbance because of the destabilizing effect of

viscosity near the solid surface. Consequently, a neutl'al subsonic

disturbance }_th the phdse velocity c >=cI ¢1.oesnot exist; in

fact, all subsonic disturbances for _hich c_. cI _i_ damped.

When M ° < l, there is al_,mys s range of values of phase velocity

< c < co for which the ratio 'IEc* _ven by eq_mtion (4.22),0

'is smnll enough for neutral (and self-excited) subsonic disturbances

to exist for'Reyn0].ds numbers greater than a certain critical value.

}then M o > l, however, becsuse of the physical reqv_romont

that c > 1 - --1..> 0, the possibility exiots that for certain "

Mo

thelmml conditions at the solid surface the quantity [_ w'(_--)],__c

is al_ys sufficiently large negatively (and therefore Ec*--- is

El*
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sufficiently large) so that only damped subsonic disturbances exist

at all Reynolds ntm_bers. Of course_ if d (w'_
_\_-/ vanishes for some

value of w._ 1 1 it is certain that v(c) < 0.580 for some

range of values of the phase velocity 1- __l < c< c . In that

Me -- o

case, neutral and self-excited subsonic dist1_bances always exist

for R > Rcrmi n and the flow is always unstable at sufficiently

hi_1 Reynolds numbers_ in accordance _d.th Heisenberg's criterion
as extended to the compressible fluid (section 2).

A discussion of the significance of these results is reserved
for a later section (section g) in _qich the be]my!or of the qunn-

tity _v will be related directly to the thelu_al conditions

at the solid surface 8nd the free-stream M_c11 nt_ubor.

5. CRITERION FOR THE _I_IIM CI_r£]_CALREYNOLDS IT_IBER

The object of the stability analysis is not only to determine
the general conditions under _._ich the laminar boundJ_ry layer is

unstable at sufficiently high Reynolds n_bers but also, if possible,
to obtain some simple criterion for the li_nlt of stability of the

flow (minimum critical Reynolds nt_nber) dn terms of the loc_l

distribution of moan velocity and mean te_.iporatLu_ across the

boundary layer. For plane Couette motion (linear velocity profile)

and. plane Poiseuille motion (parnbolic velocity profile) in an

incompressible fluid, Synge (reference 13) _,_s able to prove

rigorously that a mlnimt_n critical Reynolds number actually exists below

which the flow is st_bl_. His proof _pplies also to the laminar boundary
layer in an incompressible fluid, with only a sli@_t modification (refer-

ence 5_ part III). Such a proof is more difficult to give for the laminar

boundary layer in a viscous conductive gas; ho_ovor, the existonce_
in gon,Bral, of a minimum critical Reynolds nt_nber can be inferred

from p_r_ely physical considerations. A study of the energy balance

for small disturbances in the laminar boundary layer sho_ that the

ratio of the rate of viscous dissipation to the r._te of energy

transfer nosr the critical layer is 1/R f_ a disturbance of
given wave length _ile the oner£_" tr_nsfer associated _ith the

destabilizing action of viscosity near the solid m_f,_cc boars the

ratio 1/_ to the enor_- transfer near t_o critical layer. Thus,
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the effects of visco_2 _dssipation _dllpredomlnate at sufficiently:

low Re_nolds n_mbers sn_ all subsonic distt_bances %_ll be damped,

The t_ distinct as_zpto'tic branches of tile curve of 6 against R

for the neutral disturbances at large Reynolds nt_nbors must Join

eventually (section 4) and the flow is stable for all Reynolds
nlunbers less than a certain critical value.

An estimate of the value of Rcrmj_n , %_ich wil] ser_e _s a

stability criterion, is obtained by taking the phase? velocity c

to l_va the maximum possible value co for a net!tr21 subso_aic

disturbance_ that is_ for c > co all subs_._nlcdisturbances are

damped. This condition is very no,'_rlyequlvaL_t to the conaition
that _R be a minimum, which _ms employed by Lin fo_. the case of

the incompressible fl_Ld (p, _E_ of reference 5._part IT[I). The c_ndi-

tion c--c occt_s _en i_(z) is a m_xim1_m; that is, _hen _ (z) = 0.5_,o _ i

= 3,22 and $r(Zo)=: 1.48 (fig. 9). Thezo correspondil_ vs!ue

z% O •of c :--co can be calculated from t1_erelations (2.19) to (_..2_.)

Neglecting terms in k2 (X is usually very sm_.il) and ta_ing u = 1.50
gives

where

and

(5.2)

C

It is only necessary to p!ot the quantity (! - 2%)v against c "
for a :-,_iv_n]_ _

.....mJn_r bot_dary-l_ver flow :_nd _" _ the value of c co

for which (i - 2k)v 0.9_O. The coiTeiponding v_iue of _R -fs
determined from the relation

_0
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(5._)

and this value of _R is very close to the mirdmum value of oR.

A rough estimz-te of the value of m for c = co is @iven by tlle

following relation (equation (2.27)) :

(5.5)

This estimated value of m is, in general, too small. The

following estimate of Rcrmi n is obtained by making en approxiF_te

allowsnce for this discrepancy and by taking round numbers:

Rcrml n = . ,
(5.6)

or

(5.7)

For zero pressure grad!ent_ the slope of the velocity profile at

the surface _w is given very closely by (appendix B)
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Therefore

0.332

T1

Recta! n "-'_--M_-_ --o %)

The expression (9.8) is useful as a rough criterion for the dependence

of Re on the local distribution of mean velocity and mean
Crmln

'temperat1_e across the bo_udsluj layer, It is i_iately e_-_ldent

th,_t I_ecrmin--->_ when Co--_l - 1 , When [(! - 2k)v] >0,580_Me c=1-1--

Mo

the lsmlnar boundar_l la__zeris stable at all values of t11eRe_molds
n_umb_.b_cr,p'is condition is sn improvement on the sh_bility condi-

> 0,580 (approx.) stated in emotion 4.,)tion v 1 --

M o

In the follo_&ng tables and in fi_es 5 and 6(a) the estimated

values of Recrmln C_ven by equation (5.8) can be comp,__rodwith the

values of R0cr_.n''_ taken from the calc,_.ated c_ves of _ against R0

for the neutral disturbances, For the insulated "_"• su-_.,.aco,th_ values
are
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Z o

0

.50
.70
.90

i.I0

1.30

C o

o. 4186
.4400
,4600
.4850
•5139
•545o

T(Co)

1.0000
i.0408
]..O782
i.1254
t. 1803
i. 2406

].95
z7o
15o
129

1o9
92

Recrmin

• 15o
136
126

115
lO4

92

For the noninsulated surfac,e _qen Mo = 0.70_ f]_o values _re

TI

0.70
.8o
.9o

1.25

C
0

o. ].872
• 2_3-9
.3._9
•5194

0.7712

.8716

.9562
i.1449

5377
1463

524
89

R8 Crmin

(fig. _)

515o

523
63

The expression (_.8) for R0crmin gives the correct order of

magnitude and the pro_er variation of the stability limit with Mach

mnnber and with surface temperature at a given _hch number. "

The form of the criterion for the _d.nimum critical Reynolds

number (equation (9.8)) aria.the remults of the detailed stability
calculations for several ropresentative c_ses (figs. 3 an& 4) show

that the distribution of the product of the density and the

vortIclty p-- across the bmmd2ry layer Isrgely determines the

limits of stability of !am_,nar boundary-i_yor flo_. The fact that

the "proper" Reynolds numbor that appears in the bound2ry-layer

stability calculations is based on the kinom_tlc viscosity at the

inner critical layer (_here the viscous forces are important)

rather than in the free streim also enters the problom_ but it

amounts only to a numerical and not a q_a.li_.Itive c!mnge when the

us_ual Reynolds nt_nber based on free-stream kinematic viscosity is

finally computed. Whether the value of l_crmln for a given

_3
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laminar boundary-layer flow is larger or smaller thsn the value

of Recrmin for the Blaslus flow, for e_mz_ple, is determined

dw
entirely by the distribution of p_ across the boundary layer.

<l f,,d,,-',i
If the quantity _ _'_v# is negative and large near the solid

surface so that the quantity (1 - 2X)v(c) reaches the value 0.580

when the value of ¢ = co is less than 0.4186, the flow is rela-

tivelymore stable than the Blasius flow. If the quantity d(p_)_

is positive near the solid surface, so that (i - 2X)v(c) = 0._80
_en w(or c) > 0.4186, the flow is relatively less stable than

the Blasius flow. Thus, the question of the relative influence

on Reermin of the kinematic viscosity at the inner critical layer

and the distribution of p_vw across the boundary layer, which

remained open in the concluding discussions of reference 8, is now
settled.

The physical basis for the predominant influence on RScr_in

dw

of the distribution of Pd_ across the boundaiv layer is.,to be

found in a study of the energy balance for a subsonic boundary-layer
dw

disturbance (section 4). The distribution of p-- determine_ the
Cv

maximum possible value of the phase velocity co or the maximum

possible distance of the inner critical layer from the solid surface
for a neutral subsonic dlsturbance. The _eater the distance of

the inner critical layer from the solid sua-fnc_, the _-eater
(relatively) the rate of energy absorbed by the mean flow from the

disturbance in the vicinity of the. critical layer (equations(4.21)

and (4.22)). _hen c_ is largo_ therefor% the _nor_ balance
for a neutral subsoni_ disturbance is achieved only _hen the

destabilizing action of vlscosity near the solid surface is rola-

I 3/2
tively large 0% in other words_ when _ = c is large

ff"O--_
_PCo •

and the Reynolds number t1,o_ which is very nearly oqual to Rormin,

is correspondingly small, On the other h_d, when c o is small
and the inner critical layer is close to the solid sth_face, the rate
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at which ener_ is absorbed from the disturbance near the critical

layer is relatively small and the rate at w}_ch energy passes to

the disturbance near the solid st_mface, _hich is of the order

1
of -------, is also relatively small for energy balance; conse-

quently Rcrmi n is large.

6. PHT_SICAL SIGNIFICANCE OF REbW/LTS OF S'2ABILITY ANALYSIS

a. General

From the results obtained in the present paper _nd in refer-
ence 8, it is clear that the stability of the laminar boundary

layer in a compressible fluid is _verned by the action of both

viscous and inertia forces. Just as in the case of an incompressible

fluid_ _e stability problem cannot be understood unless hhe viscosity

of the fluid is taken into account. Thus, _hether or not a laminar

boun&_ry-layer flow is tmst_ble in the inviscid compressible
fluid (R--_)_ that is, whether or not the product of thedensity

dw i

and the vorticity P_v has an extrom_ for some value of w> i -_--,
o

there is al_mys some value of the Reynolds nt_nber RCrmi n below

which the effect of viscous dissipation prodomlnatesand the flow

is stable. On the other D_nd, at very large Reynolds n1_nbers the

influence of viscosity is destabilizing. If _!e free,stream

velocity is subsonic, sr4y !a_inar bomxdary-layer flo_ is _mstable

at sufficientlyhiF_ (but finite) Reynolds numbers, whether or not

the flovis stable _n the inviscid fluid _,&on only the inertia
forces are considered.

The action of the inertia forces is more decisive for the

stability of the laminar boundary layer if the f'_-oe-strcam velocity
is supersonic/_ Because of the physical requirement that the rela-

tive phase velocity (c - l) of the bolmdary-layer disttu'bances

must be subsonic, it fellers that c > 1 1
-M-- > 0 and the qtmn-

- O

[_ \(pd_W_|d'Y_!_ccan be large enough negatively trader certain
tity

conditions so that the stabilizing action of the inertia forces
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near the inner critical layer (where .w = c > O) is not overcome

by th_ destabilizing action of viscosity near the solid surface.

In that case, w_d_mped disturbances cannot exist in t_e fluid, and

the flow is stable at all values of the Reynolds number.

Regardless of the free-stream velocity, the d._stribution of
dw

the product of the density and the vorticity D_- across the

boundary layer determines the actual l_mlit of stabllity_ or the

minimum critical Reynolds number, for lamlnsr boundary-layer flow
in a viscous conductive ges (cqu_,t!on (5.8)). Since the distri-

d_¢ -
but!on of P-- across the bolmdal_y layer in turn is dotermlne_ by

_y
the free-stream Mach nlmber and the the_mal conditions at the solid

surface; the effect of those physical p_rameters on the stability

of _minar boundnry-layer flow is readily evalunt_d.

b. Effect of Free-Stream Msch N_ber an& Thermal Condi.tlons at

Solid Surface on Stability of Lamlnnr Botuud,_ryLayer

The distribution of mean velocity and mean temperat_u-e (an&

therefore of p_wr) across the laminar bo_mda_7 layer in a viscous

conductive _s is strongly influenced by the fact that the viscosity

of a gas increases with the tompor,_ture. (For most _L1ses_ _ (_ Tm

(m = 0.76 fo_ air) over a falrly _,rid_tomporatttro range.) _en
heat is transferred to the fluid t]Lrou_h the solid stux_aco, the
tomporatt_o and viscosity near the _our_ace both decrease along the

out_.mrd noiuns].;and tlio fluid near the surface is more rota_rded by
the viscous shear than the fluid farther out from the st_face - as

compared with the isothcrr_l Bloslus flo_¢. The velocity profile
therefore al_ys possesses a point of inflection (where _" = O)

when heat is added to tliefluid throu_ the solid surface, provided
there is no pi_ssure _-adient in the direction of the m_in flov.

Slnco _ ---,_Pd.-_/)= T2 , tl_e qt_ntity -_ \ay/p V_n'_shes

and P-- has,_n oxtremi_n at sc_e point in th_ fluid. On the other

hand_ if heat is withdl-a_._._from the fluid tkrouF_, the solid sur-

face: _T and 3__ are both positive near the stu'face _nd the

fluid near the surface Is less retarded than the fluid f_rther

_6
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out - as compared with the Blaslus flow. The velocity profile is

therefore more convex near the surface than the B].asius profile.

As pointed out in section ll of reference 8_ the influenc@

of the variable viscosity on the behavior of the product of the
• dw

density _und the vorticlty Pd_,_ can be seen directly from the oqtt_-

tions of motion for the mean flow, }_en there is no pressure

_'adient in the direction of the main flow, the fluid acceleration

vanishes at the solid surface; or

- --- _,* ! I = 0
(6.1)

and

(6.2)

Thus when heat is added to the fluid throu_jz the solid surfac@

(TI' < 0), (_)_ is positiv%and the velocityprofile is concave

near the surface and possesses a. point of _f!ection for some .value

¢ '>9 '"of w > 01 when heat is _thdra_m frc_ the flui& 1 ' .-, _.
_:.:. r_.

is negative_ and the velocity profile is more convex near the st_face
than the Blasius profile.

The behavior of the quantity b fl "_-_-_="d_-_'d_isi--_

_U_. .

parallel to that of _, From eqt_tion (_.2); in nondlmensional
vj-.

form_
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= =-- Tl'W l'

Differentiating the dynamic equations once and msk__ng use of tho

ener,_y equation gives the following expression "for

(appendix D) :

(6.3)

: tt,')= (6,4)

'_S is a!ways positive.
Thus, for zero pressure gra._ien% tT)] 1

Now> if the surface is insulated, the q_ntity [(_'-/_(_)]l_'r'vanishes,

b
b_t LEt_)j I >o and

and --- both increase _dth
T

distance from the solid surface. Since -----_0 far from the solid
T

sttrfa.ce, _' (_I
-- has a maximum and d_ vanishc_s for some value

T dy

of w > 0.- If heat is aEded to the fluid through the solid sur-

face (T!'< 0), dd_(___[_ is already positive at the surface, and
dy \m /

since > O, the q_ntity _Y vanishes at a. point
\T/]i '

in the fluid which is fai_ther from the surface than for an insulated

boundary at the same Mach number (figs. 3(a) and (b)). Conse-

quently: the value of c = co for _ich the ftmction
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• --0

value 0.580 is larger than the value for the instGated surface.

By equatio_ (5.8)_ the effect of adding heat to the fluid tb__ough

the solid surface is to reduce R@ormln and to destabilize the

flow, as compared with the flow over an insulated surface at the

same Mach nt_mber (fig. 6).

If heat is _thdr_wn from the fluid throu_ the solid surfacs,

Tl' > •0 and I'_I_')Id-- is ne_tlve. In fac% if the rate of heat

1

transfer is sufficiently large, the quantity _ does not

vanish _thln the boundary layer (fig. B(b)). The value of c = co

for _fllichthe function (! - 2k)v(c) reaches the value 0.580 is

smaller than for an insulated surface at the same Mach number, and
by equation (5.8), the effect of wlthdra_ng heat from the fluid

through the solid surface is to increase RScrmin and to stab$11ze

the flow, as compared with the flow over cn insulated stu_face at

the same Mach number(fig. 6). _en _le velocity of the free stream

at the "edge" of the bo_udary layer is supersonic, the lami_mr

bo_udary layer is completely stabilized if the rate st _hlch heat
is _thdrawn t_roug_h the solid surface roaches or exceeds a critical

value that depends only On the _ch nt_nb_r, th_ R_elds number,
and the properties of the gas. Th_ critical rate of heat transfer

is that for which the quantity _y is sufficiently large

negatively near the surface (see equation (6.3)) so that

(1 - 2k)v(c) = 0.580 _on c = co = 1 ----1 (sections 4 and 5).
. Mo

Although detailed stability calculations for supersonic flow over

a nonlnsulated surface have not bc_n carrlod out, the f_mction
(1 - Tk)v(c) has been computed for n0ninsttlatod stu_facos at

MO= ]._0_ 1.5_ 2.0_ B.0_ and 5.00 by a rap:I.&_pprox.i_mte method

(appendix C). The corresponding estlmnted values of R_crmln were

calculated from equation (5.8),_.and in fi_n'e 7 th_sc values are

plotted agmlnst T1, the r_io of s_face tempcratu_e (dog abs.)

to free-stream temperature (d_g abs.). At any _venMach number
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greater than unity the value of Recrmin increases rapidly

as co---)l ..lo; _ion co differs only Slightly frc_n 1 _l. -- - M-_

the stability of the laminar boundary layer is extremely sensitive

to thernnl conditions at the solid surface. At each value of Mo > l,

there is a critical value of the temperature ratio Tlcr for

_ich Recr_!n--@_). If T1 __Tlc r, the L%mlnar boundary layer is

stable at all Re_u%olds numbers. The difference betvoen the

stagnation-temperature ratio and the criticcl-m_rface-temperatu1_e

ratio, _ich is related to the heat-transfer coefficient; is plotted
against Mach number in fie_ro 8. Under free-flight conditions_ for

Mach munbers greater than'some critica ! Mach number tlmt depends

largely on the altitude, the w_lue of Ts -Tlc r is within the

order of maGait'_le of the difference between stagnation temperature

and surface tomrporature that actually exists because of heat radia-

tion fk'om the m_faco (references 14 and 19). In other woz_ds, the
critical rate of heat _dthdra,_21 from the fluid for laminar sta-

bility is within the order of ma_uitudo of the calculated rate of
heat conduction t_hr-.u_ the solid surface _nich balances the heat
radiated ITem the svrfaco under equilibrium conditions. The calcui_-

tions in appendix E show that this critical Mach number is approxi-

_'tely3 at 90_000 feet altitude and approximately 2 at
i00,000 feet altitude. Thus, for Mo > 3 (approx.) at 50,000 feet

altitude and Mo > 2 (approx.) at lO0,O00 feet altitude, the

laminer be_andary-loyor flow for thermal dquilibrium is completely
stable in the absence of an adverse pressure gredient in the free
stream,

%_en there is actually no heat conduction %_hrough the solid

surfaco_ the limit _of st_bilit_- of the lamln,_r boundary layer

depends only on the freq-stro_nn Mach number_ that is, on the extent

of the "aorodynamic heating" f tho order of _l*\_Z._/ near

the solid surface° A good indication of the influence of t?:e free-
dw

stream M_.ch n_ber on the _istribution of p_ across tho boundary

layer for an ins ulatc_ s},rf_:cois obtained from a rou_ estimate

of the location of the point at which d (pdW] ro ehosapositi o

maximum (or --- vanishes) Difforontlating the _dynamlc
dy2

5O
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equations of mean motion t_ice and making use of the energy and

continuity equations yields the following result for an insulated
s_face:

[&_3 (6.5)

_qere

of c

is given roughly for a_r by

b 81 --. From equations (6.4) and (_.5) the va]ue

f) W(___.)reaches a mac/mum,
at _lich ,dL. van_.shes_ or d__

¢@ &Y

_r?oL,,'\I

Me 2 Me2

...... (6.6)

I

in _hich _'rl, _ b(0.3320) (eppondix _ )Ii I_ other _,,_rds,the point
T1

in the fltdd at _,"hichd /_'_ _
d;--7\_-_,attains a _.x._/m_nmoves farther out

from the surface as the Mach nt_nber is _ncreased - at least in the

range 0 < M < !__ (approx.); therefore the value of c for

<_?.\_-/ vanishes and the vslue of c = co for _-hlch

(1 - _)v(c) resches the value 0.980 both increase vlth the _ch

number (f_g. 3(a)). By equatlon. (5,8), the value of Recrmin for

the laminar bo1_dery-iayer flo_- over an insulated su_'face decreases

as the Mach number !ncre¢_ses and the flo_,;is @.estabilizcd_ as cam-
pared _ith the Blss_us f3.o_,:(fig. 5).
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c. Results of Detailed Stability Calclu!ations for

Insulated and Noninsulated Surfaces

From the results of the .detailed stability calculations for

several representative cases (figs. 4 to 6), a quantitative
estimate can be made of the effect of free-streamMach number

and thern_l conditions at the solid surface on the stability of

laminar boundary-layer flow. For the insulated surface, the value

of _eCrmln is 92 vhen Mo = 1.30 as compared, with a value

of 150 for the Blasius flow. For the noninsulated surface

at Mo = 0.70, the value of Recrmin is 63 _len T1 = 1.25 (heat

added to fluid), Recrmin = 126 _,_en T1 = 1.10 (insulated sur-

face), and Recrmin 5150 _hen TI 0.70 (heat _.thdrawn from

 /Uo*fluid). Since Rx. = 2.25R02 , (the value of O , which

 Uo* x*

is proportions11 to the sign-friction coefficient, differs only
slightly from the Blasi_s value of 0.6667) the effect of the thermal

conditions at the solid surface on Rx. is oven more pronounced.

The value of Rx. is 60 x l06 when T1 = 0.70 and Mo = 0.70,

_s compared with a value of 51 x l0 B for the Blasius flow

T1 = 1 and Mo = 0). For the insulated surface the value

of Rx.crmi n declines from the Blaslus value for Mo = 0 to a
i

value of 19 × I03 at Me = 1.30. The e]xtreme sensitivity of the

limit of stability of the lam%D_r boundary layer to thermal condl-

tions at the solid surface _nen T1 < 1 is accounted for by the

fact that co is small _1on T1 <l and M o < 1 (or Mo is not
1

much greater than unity) and Recrmin =----_ (equation (5.8)).
C o

Small changes in Co, therefore, produce largo changes in R0Crmin.

In addition, when T1 < l, small chansos in the thermal conditions
I _k

at the solid s_rface produce appreciable changes in d---(_w--i'_(eque-
dy

tion (6.3)) and, therefore, in the value of co .

Not only is thc value of l_crmin affected by the thermal

conditions at the solid surface and by the free-streamMach number

52

=



I_ACA TN No. 13_0

but the entire curve of a6 against Re for the neutra.l._is-

turbances is also affected. (Sge figs. 4(k) and 4(_).) _len the

surface is insulated (and Mo _ 0); or heat is added to the fluid

(T1 = 1.25_, _--+% _ 0 as Re--_ along the upper branch of

the curve of neutral stability. In other words_ there is a finite

range of unstable _mve lengths even in the limiting case of an

infinite Reynolds number (invlscld fluid.). However_ _ ---_0

as R9 _ _ for the Blasius flo_, or when heat is _thdra_ from

the fluid. This behavior is _n complete agre_ment _lth the results
obtained in section 4 and in reference 8.

A comparison between the curves of _ agsi.nst Re for

TI = 1.25 and TI = 0.70 at _ =-0.70 sho%_ that withdl_awing

heat from the fluid not only stabilizes the flow by Increaslng_,Recrmin

but also g_eatly reduces the range of unsta_!e _mv_ numbers [c_).

On the other hand, the _&dition of heat to the fluid tPmough the

solid surface greatly increases the range of unstable _mve numbers.

It should also be noted that for 6iv¢n values of _, c,-

and R6 th_ time frequonclos 'of the boundary-layer disturbances

in the hlgh-speed flow of a gas are co.nsldorably greater than the
frequencies of the f_millar Tqllmien _aves observed in low-speed

flo_. The actual t_me frequency n* expressed nondimenslonally
is as follows:

n* %*

For given values of % _ and Re the frequency increases as

the square of the free-stream velocity.

d. Instability of Laminar Boundary I_yer and

Transition to Turbulent Flow

The w_lue of Recrm_n obtained from the stebillty analysis

for a _iw_n la_dnar beta_dary-layer flow is the wluc of the Reynolds
n_nber at which se!f-exclted disturbi_,ncesfirst _ppear in the

boundary layer. As Prandtl (reference 12) care___tllypointed out,
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these initial disturbances are not turbulence, in any sensej but

slowly growing oscillations. The value of the Re_molds n1_nber at

_Thich boundary-layer _dsturbances propagated along the surface will

be amplified to a sufficient e_-tent to cause turbulenc_ mt_t be

larger than R0crmin in any case; for the insulate& fh_t-plate

flow _t low speeds and _th no pressure _mdiont, the transition

Re_nqo!ds number Ret r Ss foluud to be tllree to seven times as

large as the valu_ of Recrmln (references 6 and $). The value

of ROt r depen_ not only on P_crmin but also on the initial

magnitude of the disturbances with the most "dangerous" frequencies

(those -_..thgreatest _nplification), on th_ rate of' amplification

of these disturbances, and on the physical process (as yet _lla%own)

by _ich the quasi-stationary l_inar flow is fin,_lly d@stroyod
by the amplified oscillations. (See, for ormmple_ references 16

and 17. ) The results of the stability 2_alysis novortheless pci_mit

certain general st_tem_nts to be made concorning the effect of
free-stream Mach n'umlberand thormal conditions at the solid surface

on transition. The basis for those statements is stmmmrizod as

follo_: __

(i) In mmny problems of technical intcrcst in aeronautics the

l%vei _of freo..stre_m turbul_nco (magnitude of initial disturbances)

is stlfficiently io_ so that the origin of transition is al%_ys to

be fovald in the instability of the laminar bottndary layer. In

other words, the value of R@Crmin is an absolute lower limit for

transition.

(_) The effect of the free-stream Mmch n_nbor _md the thermal

conditions, at the solid surface on the stability limit ___R_crmin_

is over_olming. For em_mplo: for Mo = 0.70, the value of R@cr_in

_;hon T1 = 0.70 (heat _ithdr_vn from fluid) is mors than 80 times

as groat as the value of R_crmin when T1 = 1.25 (heat added to

fluid).

(3) The m_xim%_ rate of s_npliflcstion of the solf-oxcltod

boundary-layer disturbances propa_:_tod along t_ho am'face varies

....roughly as ] _cr . (This approximation agrges closely _,N_th

the numerical! resttlts obtained by lh_etsch (rof&r_mco 18) for the

caco of an incemlsressible fluid.) The offuct of %__thdrawing heat

from the fhdd_ for example, is not only to increase R_crmin and
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stabilize the flow in that mannerbut also to decrease t_le initial
rate of amplification of the unstable &Isturbances. In other words,
for a given level of free-stream turbulence, the interval
bet_en the f_rst appearance of self-excited disturbances
and the onset of transition is expected to be m_Iehlonger for a

relatively stable flow, for which ROcrmin is l_rge, than for a

relatively unst_bl_ flow, for _ich l_ecrmin is small and the
initial rate of amplification is large.

On the basis of these observations, tr-_nsition is" delayed (Rotr
increased) by vithdrawing heat z_'omthe fluid tl_ou_1 the solid
surfaceand is advancedby adding h_at to th_ fluid through the
solid surface, as compared__th the insulated stu_faco at the s_me
Mashnumber. For the insulated surface, transition occurs esrlier
as the Machnumber is increased, as comparedwith the flst-plato
flow at very low Mashnt_nbors. Whenthe froo-stz'oam velocity at
the edge of the boundary layer is suporsd1"dc, tram_ition never
occurs if the rate of heat vlthdra_ml from the fluid through the
solid surface reaches or exceeds a critical value that depends

only on the M'_ch nuunbor (section 6b and figs. 7 and 8).

A comparison betatron the rostults of the present analysis and

measurements of transition is possible only _on the freo-stro,_m

pressure gradient is zero or is held fixed while the free-stream
Mach nt_bor or the thermal conditions at the solid s'_-face are

v_riod. Lie_mmnn and Fil_ (reference 19) have .mcastu_edthe move-

ment of the transition point on a flat pl_to at a very low free-
stream velocity %_en heat is applied to 6he s_faco. They fom_d

by moans of the hot-wire' anom_not0r thet R_t r declined

from 5 × lO5 for the instulated st_f:_ce to a wlu0 of approxi-

zzt_ly 2 × lO5, for T1 = 1.3g when the level of free-stream

turbulence ,] (u_'-_12

V(_)2 -_us 0"17 percent' °r t° a value °f 3 × I05

when _F_----_ = 0.05 percent and T1 = 1 ,40. The w_luo of ROt r

•
declines from &70 (approx.) to 300 (approx.) in the first case _nd
to 365 in the second,

__rick and McC_llou_ (reference 20) obsor_'ed the variation in

the transition Reynolds number when heat is applied to the t_pper
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surface of an NACA 65_2-016 airfoil at the nose section alone, at
the section just _head of the minimt_npress1_re_ station, an_for

the entire laminar run. _en heat is applied only to the nose

section, th_ transition Reynolds n_mber (determined by t0tal-pressure-

tube measurements) _s practi_lly unchanged. Near the nose,

Re << Recrmln and the strohg favorable pressure &Tadient in the

re__on of the st_gnatlon point stabilizes the l_mlnarboundmry layer
to such mn extent that theadditlon of heat to the fluldhas only

a negligible effect. _rnenheat is applied,however, to t]_e section

J_t ahead of the minimum pressure point, _lere the pressure

gradients are moderate, the transitlon_eynolds number R_t r

declined tea valu_ of 1190 for T1 - 1.14, co_paredwith a value

of 1600 for theinsulated surface. When heat is applied to the

entir_ laminar run, ROt r declined to a value of 1070 for T1 = 1.14.

It _uld be interestlng to investi_te experimentally the

shu1_ilizing effect of a _dthdra_ml of heat i_romthe flui_ at super-

sonic velocities. At any rate, on the basis of _e results obtained

In the experimental investi_tlons of the effect of heati_gon

transition at low speeds, the results of the stability analysis

glve _e proper direction of this effect.

7I.Stability of the I_minar Boundary-L_yer Flow of a Gas _dth' a

Pressure Gradi_mt in the Direction of hhe Free Stre_

For the case of an inco_prossible fluid, Pretsch (roforence 9)

has shown that even with a pressure gradient _ the direction of

the froc stro_m, the _qg_!_ mean-velocity distributimu across the
boundary _2yor completely determines tNo stability characteristic_

of the local laminar boundary-layer flow at large Re_molds numbers.

From pl_ysical considerations this statement should apply also to

the compressible flt_d_ provSdod _y the stability of the flo_

in the boundary layer is considered and not _he posslblo inter-

action of the boundary layer _nd the main "oxternnl"flov. Further

study is requlrod to settle this question.

If only hho local mean volocity-tempore_e dlstribut_on across

the boundary layer is found to be significant for laminar stability

in a compressible _lu_d, the criterions obtained in the present

paper and in reference 8 are then i_modistoly applicable to laminar

boundary-layer _s flows in which there is a frce-stroampressure

gradient. The quantitative effect of a pressure _adient on laminar

stability co_d bcreadily determined by moans ofthe approximate
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In a region of sm_]! or moderate pressure gradients _ _2,

_I _o* dx

dwsay the &Istribution of O_y is sensitive to the thermal conditions

at the solid surface. For example_ the chord_ise p6sition of the

point of instability of the laminar boundary layer on an airfoil

_ith a flat pressure distribution is expected to be strongly influ-
enced by heat conduction through the surface. (See reference 20. )

For the ins_Llated mu_face, the equations of m2an motion yield the
following relation (appendix D)_ which does not involve the pressure

gradient e..._plicitly:

2 \ dy/J Ti

>0 (7.3)

The effect of "aerodyrmnic ho_ting" at the s,_n_f_ceopposes the
effect of a favorable presstu'e gradient so far as the di'strlbuti0n

dw
of D-- across the boundary layer is conce1_ed (equations (7.2)

dy

and. (7.3)). The relative quantitative influence of these two effects

on ls_i_zZ_'stability c_n only be settled, by actual calculations of

the land.nat boundary-Lyer flo%- in a compressible fluid vlth 8 free-

stream pressm_e gradient. A method for the calculation of such
flows over an insulated surface is given in reference 2P-.

_hen the local free-stream velocity at the edge of the boundary

layer is supersonic. _ negative pressure _cdient can hove a decisive

effect on laminar stability. The locnl lami_mr boundary-layer flow

over an i_tulated surfac% for oxnmple, is e:_ect_d to be completely

stable _en the magnitude of the locml negative pressure gradient

reaches or @xceeds a critical value that depends only on the local

Mach number and. the properties of the gas. The critical magnitude
d f d,,,\

of the pressure gradient is that which _'d_s the qusntity _t,_yJ

sufficiently large negatively near the s_face so tl_t

w1 ' c TI_ d w_)l
- ,, -.

TI dy

i

M
0
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estlmste of _Recr_ n (e_uatlon (5.7)), in terms of the distribution

of the quantity Od-Lw across the boundarY layer. Such calculatio_-_
• dy ;.....

(unpublished) have already been carried out by Dr. C. C. Lin of

Browr_ Uni-versit ) for tho incompressible flt_.& by means of the

approximate estimate of RS.crmi n given in reference 5, part III.

In ar_v event, the qualitative effect of a free-stream pressure

dw

gradient on the local distribution of _v across the boundary

layer is evidently the same in a compressible fl1_Id as in an incom-
pressible fluid. If the effect of the local press1_re gradient alone

is considered, the velocity distribution across the boundary layer

is "fuller" or more convex for accelerated than for uniform flow,

and conversely, less convex for decelerated flo_. Thus, from the

results of the present paper the effect of a ne&otlve pressure

gradient on the laminar boundary-layer flow of gas is stabilizing,

so far as the local moan velocity-temperature distribution is con-

corned, while a positive pressure gradient is &estabilizlng. For
the incompressible fluid, this fact is well established by the
Rayleig_1-Tollmien criterion (reference 3), the _ork of Holsenberg
(reference l) and Lin (reference 5), and a mass of detailed cal-

culations of stability limits from the curves of m against R
for the neutral disturbances These calculations wore recently

carried out by several German investigators for a comprehensive

sorles of pressure gradient profiles. (See; for examp]'e_ refer-
onces 9 and 21.) :

Some idea of the rclativo influence on laminar stability of
the therm_l conditions at the solid surface and the free-stream

pressure gradient is obtained from the equstio_s Of moan motion.

At the surface,

or

m " '! ' : 52 dUo*
. . 1

T1m+l _o* dx*
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It has a.h._eady been shown in the present paper that _hen M o > 3

(_pprox.) the laminar bounds.ry-layer fio_ _ith a tuuiform free-stream

velocity is completely stable under free-flight conditions when the
solid surface is in" the_nal equilibrium, that is, when the heat
conducted from the fluid to the surface balances t_le heat radiated

from the s_rf_ce (section 6b). The lam_in_r botuudary-layer flow

for thezxaal equillbr:!!_m shot_!d be canpletely stable for Mo > Ms,

s._y, _._ere M s < 3 if t/iere is a neomtive pressure gradient in

the .&irection of the free st;_eam. Favorable presstu_e gr_&lents

exJ.st over the ford.mr& part of sharp-nosed airfoils and bodies of

revolution _vlng at supersonic velocities, and the limits of sta-

bi].ity -,(R0crmin] of the lamln_r bovJadary layer ahould be cel-

c_ulsted in such cases.

CONCLUSIONS

From a study of the _tability of the l&m!r_r boundary layer

in a compressible fluid_ the follo-__ng conclusions _._re reached:

1. In the compresslble fluid as in the incom!_ressib!e fluiS,

the influence of viscosity on the laminar boun&azLv-layer flo_ of

a gas is destabilizing at very large Reynolds n_nbers. If t_le

free-sbream velocity is stlbsoni% _%y laminar boundary-layer flo_¢

of gas is _z_stable at st_ficiently high Reynolds n_bors.

2, Regardless of the free-stream _ch munber, if the product of

the moan density and t1_o mean vorticity has an extremum _d_ _Ddw_

) -vanishes for some v:_lu_ of w> i -1 (where w is the ratio of

Mo
mean velocity component parallel to the st_fsce to the free-stream

velocity, and wher_ Mo is the free-stream _._ch nv_ber) the flow

is unst_:ble at sufficiently hi._ Reynolds n_.unbers.

3. The acttv_l limit Of stability of laminar bounda_,-layer flow,

or the mlnlmu_ critical Reynol&s n_mber E_cr_.n , is determined

largely by the dlstributi_n of th_ product of the meen density and

the mean vorticlty ac'_'ossthe boundarj l_-yer. An approximate

estimate of R_crmln is obtained that serves as a criterion for
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the influence of free-stream Mach number and thermal conditions at
4 'the solid surface on laminar stability. For zero pressure gradient,

th__s estimate _-eads as follows:

Co)2

vhero T is the ratio of temperature at a point _dthin the bo_udal7

layer to free-stream temperQture_ T1 is the ratio of temperature

at the solid surface to the free-stream velocity, and co is the

value of c (the ratio of phase velocity of disturbance to the free-

stream velocity) for which (1. _ 2k)v = 0.580. Tile functions v(c)

and k(c) are defined as follows:

v(c) = .....
T 1

_-C

'9 9-

x(c) = ..... 1
C

_here

n_m,dimens!onaldistance from surface

4. On the basis of the stability crite-_ion in conclusion 3 an_

a study of the equations of mean motion, the effect of adding heat

to the florid throu_l tile solid s1_rfsco is to reduce R@Crmin and to
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destabilize the flow, as compared with the flow over an insulated
surface at the same Mack n'_mber. Withdrawing heat through the

solid surface has exactly the opposite effect. The value of ROcrmln

for the laminar bom_dary-layer flow over an inmLlated surface decreases

as the Mach ntunbcr increases, and the flo_T is destabilized, as com-

pared with the Blaslus flow at low speeds.

9. _len the free-stream velocity is supersoni% the laminar

boundary layer is completely stabilized if the -r,ateat which heat

is Withdrawn from the fluid through the solid surface reaches or
exceeds a certain critical value. The critical rate of heat transfer,

for which ROCrmin_,_, is that which m_nkes the quantity _ \ O_v/

sufficiently largo ne_tively near the st_rface so that

[i - _(c)] v(c) = 0.580 when c = co = i ---.i Calculations for
M o

several supersonic _hch numbers bet_._en 1.30 and 5.00 show that

for M o > 3 (app-.'ox.) _he critical rate of heat with_s_,,_l fol"

laminar stability is within the order of mq_i'bude of the calclulated

rate of heat conduction tkroug_ the solid st_face that balances the
hemt radlated from the s_mfsce under free-flight conditions.

Thus, for Mo > 3 (approx,) th6 l_minar b_u_dary--layer flow

for thermal oq_lilibrium is completely stable at all Ro3n_olds munbers
in the absence of a positive (adverse) pressua_e gradlont in the
di_ection of the free str_am.

6. Detailed calc_Ll:_tionsof the curves of _mve number (inverse

rave long, h) against Reynolds mnnber for the neutral boundary-layer

disturbances for lO represor:tativo cases of irmulated and non-

insulated s_u'facos show that also st subsonic speeds the %u2ntit_;_tlve

effect on stability of the thermal conditions at the solid surface

is very large. For eyzmplo, at a Math number of 0.70, the value

of R0crmi n is 63 when TI = 1.25 (heat adde_ to fluid), R0c_zLn= 126

_,hen T1 --1.10 (insulated stu_face)_ and R_crml n = 5150 when Tl= 0.70

(heat withd_v_.s_from fluid). Since Rx* = _.25R_ the effect

on Rx_ is even greater.
crmln

7. The results of the _nalysis of the' stability of L_ninar

boundary-layer flow by the lineaz'ized method of small Perturbations

must be applied _ith cal'o to predictions of transitlon_ %_dch is a
nonlinonr phenomenon of a _Lifferent order. Withdrawing heat from the
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fluid through the solid surface, however, not only increases Recrmin
but decreases _he Ir_tlal rate of amplification of the self-excited

dist]_rb_nces, which is roughly proportional to !/tiEecr ;addition
/

of heat to the fl]zld th_-ou6h the solid surface .has the opposite

effect. Th_ it can be concluded that (a) transition is delayed

ROt r by _ithdra_!ng heat from the fluid and advanced byincreased)

adding heat to the fluid throug_h the solid surface, as compared with
the Insu].ated surface at the same Mach number, (b)for the insulated

surface, transition occurs earlier as the Mach m_nber is increased_

(c) when the free stream velocity is supersoni% transition never
occurs if the rate of heat _thdra_al from the fluid through the

solid surface reaches or exceeds the critical value for which

• (See conclusion 5.)
Re crm!n--@ _,

Unlike l_nar instability, transition, to turbulent flow in

the boundary layer is not a purely local phenomenon but depends on

the pre,__ous history of the flow. The quantitative effect of thermal
conditions at the solid surface on transition depends on the existing

pressure @-_dient in the direction of the fr_e strea_, on the part
of the solid surface to which heat is applied, _.n_dso forth, as

well s.s on the initial magnitu_.o of the disturbances (level of free-

stream turbv&ence).

A comP.arison .between conclusion 7(a), based on the res__tltsof

_he stability analysis, and experimental _a_vostigations of the
effect of st_rfsce,heating on transition at low ,Tpceds shows that

the results of the present paper give the proper direction of this
effect.

8. The results of the present study of !amina__ stability can

be e_en_ed to inclt_le la_nar boun&ary-l_yer flo_ of a gas in

_ich there is a pressure gradient in the direction of the free

stream. .Althou£_ further study is required, it is presumed that

o_ly the local mean velocity-temperatta'o _stribution dete_mlnes

the stability of the local boun[lary-layer flow. If that should

be the case, "the effect of a pressure _ra_£ont on laminar stability

could be easily calc_zlated t!_roug_hits effect on the local distri-

bution of the product of mean density and mean vorticity across

the bo_mdary layer.

}_en the free-stream velocity at the "edge" of the boundary

layer is sup_rsonic_ by ar_logy with the stabilizing effect of a

__thdra_ml of heat _rom the fluid, it is ezi_ected that the laminar

boundary,layer flow is cozpletely stable at all Reynolds numbers
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%-hentho nen_tive (favorable) pressure gradler_t reaches or exceeds
a certain critical value that _epends only on the Machnumborand
the proport!es of the gas. The laminar boundary-layer flow over a
surface in thel_mal equilibrium should be completely stable for
Mo > Ms_ say; _here Ms< 3 if there is a negative presst_e
gradient in the direction of the free stream.

Langley Memorial Aeronautical Laboratory
National Advisory CoEmlttee for Aeronztrtics

L_ngley Fiel_ Va., September_, 19_6
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APPK_DIX A

Cf_TION C_ I_LS APP_I_G I_: TEE DW!SCID SOLUTIONS

In order to calcnlnte the limits of stability of the laminar

bo_udmry layer f_om relations (2.21) to (2.29) between the values

of phase velocity, _ve n_Iber, and Re_n%olds ntwmber, i% is first

necessary to calculate the values of the integrals K1, H1, H2,

N2, M3, N3, and so forth, _ich appear in the ezq_ressions for

the inviscid solutions _l(y) and _2(y) and their derivatives

at the edge of t/:eboundary layor. These integrals are as follows
(eq_ntions (2.13), (2.9)_ an& (2.10)):

Y2_z(o): (_- c)_---_---._
uYl

Iiv_ • .Mo2(_.o)_<7

_2 T - Moe(W - c)2

_Y2 ?Y2t (_- o)2 :r _ Mo_-(:_'. c) 2
Y_,:>, (_<-c)_

T

_Yl

_v
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D

r Y2 T - Me2(_ - c)2

.,'zl/ (_ _c)2 ,Iy (,:_ _)_ I Y2_,. %2(__ 0)2
l (_" °)2

dy

and so forth.

Terms of hlg,her order thsn =_ in the series e_pressions

for _l and _2 a1_e neglected., L_en _ < l_ the el"ror involved.
n

is small because the te__ms in the series decline llko ---. Even
n'

for ¢ > l_ ho_ever_ this approx:[mation is Justifio&_ at ],east fez_
the values of c that appear in the stability c'_lc_.atio2z for

the l0 representat_vo cases selected in the pi-osont papOro Far

example, the lea&ing term in R.P, N2k+l (c), :_Gr.o- k = 2_ , . ,,

r__ 3l
in R.P. N3(c ). The quantity in the bracP_ts is at most 0,12 in

the present calculat!ons; fez' example; E. T' l,T,.=(c)= 0.06 R.2. I" (c)
j J

Moreover_ R,P. N2k(C) _ (! - c) R,P, 2_2k+l(C). Si,_d!ar ,_tpp__o_i_'__to

relations exist betatron R.P. _'_k(C) an& _,P. I_3(c)1 and_ in

aadition_ R.P. M3(c ) z (1 - c) --R.P.°3

at most.

The only. _ntegral for _tich th_ _._Dnnz'ylX_ is ca!c_&ated

is Kl(C ). At the end of this appendix, it Is sho%_ that the con-

tributions of the _nna,._na_parts of H2, M3, and E3 are

negligib!o in comlx_rison _dth the contribution of I,P. El(C).

General Plan of Calcu!at_on

The method of calc_tlatlon adopt_& m_t take !ntc acco_unt the

fact that the value of _ _ d3"./ at the point y = .Fc, _oro _:_,
C_
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strongly influences the stability of the laminar boundn_y layer.

Accordingly, the integrals are broken into tvc parts; for example,

_ylj (_. c)2 dy + (_" c) 2

= n(o)+K12(o)-%2

where YJ > Yc" The integral Kll(C),

is calculated very accurately, _,_ereas K12(c)

more approximate method as follows:

_±ch Involves [.-_io_-)]_c,

is calculated by a

_3.y2 TK12(c) : (_- c) 2
J

¢_ (13

This Inte_,al _,sevalt_ted as a powez series in c, The

velocity profile _,_y) is approximated by a parabolic arc plus a

straight-line segment for purposes of intonation. In the more

and N3_ the indefinite inte-

'¢Y2 T
(w --c) 2 dy are evaluated by 21

complex integrals H2, M3_

_fY T d_v a_
grals dY (w- c)2

J

or 41 point numerical integration by _ans of Sinlpson's rule. The

values of _<y) are reed from the ve]oclty profiles of figures 1

and 2, The value, of YJ " Yl = a is 0.40 in t_lopresent series of

calculations_ this value is chosen so that the point y = yj is

never toe close to the singularity at Y = Yc" Take

qYj

dYl (_- c) 2
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_Y TThe integral Kll(C) _ or the indefinite intoyal ._-----_ <_,_

t/tat appears in Hg; M3, and }[3' is evult_ted by expanding the

integrand in a Taylor's series in Y - Yc and-bhen inte:_atJ,ns the

series term by term, The path of integration intuitbe taken b_lo_

the point Y = Yc in the complex y-plane.

Instead of calculating the values of the velocity an_ bempera-

ture derivatives wc(n) and To(n) directly, it is sLmpler
to relate

these derivatives to t_eir values _t the m_rfaco by Tay].or's serles

of the form

(n+2)
v1

(YC Y]) 2+ " " '

The derivatives at the surface _l (n) and Tl(n)

from the eq_,,tions of moan motion (appe:_d!x B).

are c_Iculated

The inte6mal Kll(C ) fol- em_mp!e, is f].,_a_lyobtained as a

power series in Yc " Yl = q and in Yj - Yc = a - q_ plus te_nns

involvJn,z log _. The phrase velociZy C is re3mte_ to _ by

(_ A2 _ A3_3 1
_- Oo

_here

Terms up to the or£er of a"_ _ro _.et,_-_...."_e__Ln o',xlorto include all

terms involving _.;ivii,
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Detailed Calctulations

In order to illustrate the method, the ow!uation of El(C)
is given in somedetail, as follm_:

(i) E_luation ef i_!(c):

nY2

Ki(c) = j . T___ dy - My _
Yl (v- 0)2

(a) Define

IIYJ T

KII(C ) _-j - -- dyj_ (_'_-c)2

Now

T T

_here

T
The function _ is @_veloped _n a T_ylor's series srmmd the

point w = c as follows:

.,.-Tff= T,'-_, + _ -_......... +' " '
Yc c
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where

_c = 1

I_,C ! =

2w '
C

(k) _c (k+l)

_l'c

Then

1 Yc

and

CjyI

/'Y_- Yi\ I T/' \"

\_l-yd 2

+
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where

Yl " Yc = lYl " Yc

a = Yc " Yl

The coefficients k_2/ are expressed in terms of derivatives

of T and w at Y = Yl as follo_:

Define

1 1 /T\ k

fk(Y) =

(_ - i) ...,-,(_,)2V:_/.. -

T
._ (y) =
0 (_,)e

Then " "T" k

..(?) )"-fk 1 + _k' 7- 0% " Y!)" '_;_" tYo" Y:_ +" " "

7o
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(The method adopted for the calci_l,_tion off n) from the1

velocity an_ temperature _erlvatives vl(j) and. TI(j) is civen

at the end of this" appendix.)

From the expression for Kll(C) ,

z.P. Kn(o) = I.P. KI(_) , _-,_,

f •

= _ i Yl) + qfl' y +

_5

- _(_' ' "+5 If i

and

TI " 2

R.:P.. Kn(c ) + _--_-&--. Co .-,-°lO" + °2_'

where

¢=v "YlC

+ . . . + c_c5

'?)+ Gf -_.
o i

/o-:,,, I _(_0_=<-_-)+---& . _ 0

720 _j

2

?:I

(°_ o)

71
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i _'_ tt / _ ]

[_°%'(_)+3°=_'(_)+_k_'C_)+"]
]

s3 _ "' ,,, .- .= 1 + i + .... _ af3" ! + +'"1

°_-a ; .... } =%"'(_)_. ' °','¢_)+

dk = _ £
_-l (r + i):

(k)
wl

!

h

d__.r d = 1.0o

>

_ = 0.40

• . , ."

7_
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KI2(C)

,jyj (_"- c)2

!.O T

Z ak(k + i)c
k=O

where

IOI'0 T
._0 7 +-_ _"

The velocity profile v(y) is zppro._imated by _qparabolic arc

in the interval 0.40.__<y - Yi_< YB - 'yl _nd by a strai_It line

(w _ )) in the intei.-al Y3 < y-- < 1.0.= Constant == Y3 - YI_- _i-

The value of Y3 is dete__mlned by i_osing the condition that the

area under the parabolic-arc straight-line set,lent sq_ls the area
under the actlm_l velocity profile w(y) in the interval

_ = _ + (y ) + n(y - )0.40=< y - YI=< 1.0. The parabo ....c _.rc %, m - Yl Yl 2

is determined by the folloving co_!itions:

when Y = Y4 < i,

73
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an_ Yj " Yl = 0.40,

where _(Yj) is road off the velocity profile of figures I _ni 2.
The value of YII. is chosen so that t_le parabolic arc fits the
velocity ctu_ve _(Y) closely over the widest possible range.

For c; = i,

. . _] _ l:_o%?T = Tl - _l"l),.L_A _% _ - 2-

Therefore

= 2 k"_l 2

wher e

an_[

74
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Ik is evaluated by approx!msting _y)

follow| .....

- , %.

by a parabolic _rc as

_-...../ \2]k- + ..... Ik'l

] ]0.402k-2 A

_here A = m2 - 4%n.

As a control in the calcttl<_tionof the series e}_ression
CO

_-- ak(k+l)ck is made of the fact tha% fromfor K12(c), llse

k=O

the definition of Ik and Jk'

1

lira (Ik+ Jk) = --. -----

and therefore

ak+l_ i k

llm " _,_(yj k -'-i

The remainder after N- terms in the series for I_12(c) is given

approximately by _..

75
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The real part of El(C) is obtained by combining the results
of (a) aria (b); that is,

R.p.Kl(o)_-R.P. n(o)+--_ +El#o)-Mo

(2) Evaluation of El(C ):

Y_
1

The Integrsnd of this Intogral is f_-ee of sln_u_larit!es in the

region of the complex y-plane bounded by y = Yl and Y = Y2;

therefore H1(c ) is evaluated by purely numericel inte_:_stion. The
actual procedure employed for the calculation of integrals of this

type is as follows: (The integral Hl(C ) serves as an illustra-

tion. )

Ca) Define

1 b ,-_

El(O) = _ p_,;° d_ - 2c p%' ¢_n + c_ P

: 0

w_ere

o

76
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and

(b) With the approximation that the viscosity varies linearly _._th
the absolute temperature, the velocity w is the same function of

the nondimenslon_l stream function _ as in t_e Blasius flow; tllat

_ere _ is defined by the relation d_ = pw dD (appendix B).

From these relations

_n_n dq= _.r(_)] n'l d_= [wB(qB)] n dqB

since d_ = _% dnB. Moreover,

_here

7 2- i Mo2|jWB 7 - 1 Mo2WB2
2

for _ = l.
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(c) Finally, from the relations given in (b)_

- 2c

O

of this procedure is that the integrals

once and for alland the value of Hl(C)

vs!ues of b and c. In fact_

UO_

_here bo is the value of 8_I for the Blasius flow. For

the instulated surfaces, be, which is sone_at arbitrary, _ms

chosen as 5.60; whereas for the noninsulated surfsces, bo = 6.00.

(The value of wB at '_B= 5.60 is 0.99_; _en _]B= 6.00,

wB = 0.9975. The v_lue of b for the insulated surfaces is the

value of _ at which -_= 0.9950; _hereas b for the noninsulated
surfaces is the value of _ for _d_ich w = 0.99_/5.) The advantage

I b° n
•_ d_B are calcttlated

depends only upon the

....
-_b _ 3967

0

since

an&

_=!.73o

78
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Also_

ollb° ,_B aqh = bo . 1.73o

and

b

=b +_.73@!- _)+ o.66_-z..:_ Mo_
o 2

.b.173[C 1- + 2.39"57 y - 1 M 2
o 2 2 o

See appendix B. (Inc!dentally_ the last relation sho_s the effect"
of free-stream Math .n1_ubel-and thor_,_l conditions at the solid

surface on the "thlclcaess" of the boun&ary l_yer. )

(3) Evaluation cf H2(c):

_y 2 2

Y2T -Mo (._- _)

1 b'Yl

UyI (w- c) 2
Ii¢7 -- a7 - z4o2 (_" °)2

1 T 1 T

dy _y
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Define

Y_
i (_" C)2

d7 ----_y
T

1

lyY2ivy (_,_.o)__22(c)= T
i, 1 1

(a) The integral H22 (c) is evaluated by methods similar to those

already outlined for the evaluation of K!(c). Thus

2 ry
1

_y_y

ii l, iy
LPYl . 1 ,. _JYl {JYl _Yl

_rhere

2,_22" ]"M°2 _ " ?'2" i MO

The nine integrals in the expression for H22(c)

nt_ericai integration using SJlTpson's rule.

8O

are evaluated by



(b) Define N:_CA _T No. !360

Deflne

T

-

J_ (_'_ _ _ _j (_-o)2

-----.- C_-o)_

The _ntegral

_7

(_,,. o)2

_s evaluated as fo3.1o_s:

T

T

T

81
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But

J

an&

i_y2 (_- c)2

Yl

so that

Define

Y2 T
P(c).... G(y;o)dy

tyj (w- c) 2

iOb

I T

b2 (_, o)2t •4b -

82
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%_ere

T ] T TL_

and

T =T 1 - T ! 7 - i M
- i 2

7-1 22
w-_ M w

2 o

The integral P(c) is evt_luated by mmlericsl inte_-ation using

Simpson's rule; the reqtdrod values of _,z _re read directly cff

the velocity profiles of fi_va_es 1 and 2. Fi_:l.!y,

The inte_ral H2]I(C ) is evaluated in e_ctly the same way

as Kll(C) _,_ere

= , 2 Y'Yc

WOW

,( (:, ) .....y) -- 1 _ _- - :¢c
_W I ,

C

_,Tc ! f t

' - ' Y " Yc + ' "
3,'W C
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R,P. IH211(c)l = (boa2 + coa3 + doa4 + no a5)

q(b._a 2 cla3 dl a4 2ab 3e2Co 4 3 5a4no)+ -. + + " o - - a" ([o -

+o,2(b 3a2c I 1 6a2do o)2a2 + c2a3 . 2ab I . - }4a3dl --.+ 3ac ° -i +!Oa3n

+ cr3(b3a 2 -2ab 2 - 3a2c 2 + 3ac I + 632d14 po - 4ad o - lOa2no + a3)

+ 4(. 2ab3 + 3ac2 + Pi" 4ad! .4-qo + 5en o + at!.)

• {

_¢hcre

_'\ll

wI ,)2
b =
o 6

A2. ,2h--- 0" )3 z

-- ._ /(",')_
84



NRCA TN No. 1360

"-+-3@.)

°3=3_o@I)

Co= _' 9%@g "i7V "_ ,/

°_: ,oC_0_[_oC_,;],
+ --- !

!2 T 1

Tl" T1 '

T1 T1

_0 _ _ <o_0 _ '__h_ _ _'_'_ _L

. 85
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dI 12fo@l) _';.o 3A3' _A2'"_l

- 2A2 .... :. _,_,.2(-_.)
•% V! /

" _1"%' _.T_'._3]

"_i ' \._-_7J -'-_

Pl = _ 2 T 1

T 1 ',, TI" T1

T1 T1 T I

2
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qO
i0 +--A 3 - 9_2--- .___ +

I_ TI" /T '\2 T1,,,%--"_o +T 3 _ - --- .___
TI TI

TI

TI" TI ' <_:)3 I+ _ T1 T1 - 4

r/O .-= _ .__ . .... .

2 TI ' TI"

1
+ ----..

:80

Tllll

T 1

h3fo (Wc ,)2

36

v:/J

: _B2+z: +_-+3A 236 3" :

v:Jv:/-v:/j
87
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(k)
ws.

A !k = Ak+l " /b2Ak 2 <_k <_6

• ',,_-, " - A.j___- =2,_..,- A2",%.."-'k k+l

?-< k <_9

2<_k<_4

_,k(m) = Ak+l(,=) . Ak.(_-i)

D7' = P-%3A3'

2< P< 6

o<_m<_.

B8' = A3'A 4 + A3A4',

88
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BIO = A3A 5

Finally,

_.P.H2(c)--_._._:,l(c)+ _2z_(c)-zo_(c)

(4) _valu_tlonof _(o)"

ey

IIYl " T

_here

--6--- (_- o)_ IY_ T

an_

--_3o(_)_ • _,_

89
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(a) The integral _(c) is evaluatea in much the same way

as _22(0); that is,

b° 2 T_B

t.O B

bq

_nb _o

2

\_jo o

+ a.'qB dO _fqB

t d_

where bo has the _ame meaning as in the evaluation of _22(c)

anA -,.-here

T(_) T_ [(T_i)-_--_ _B-

9o
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The integrals in M32(c ) are evaluated by numsrical integration

1_ing Simpson's rule. Values of wB are taken from the table in

appendix B. '_

(b) For convenience, the integral M31(c ) is transformed as
follows:

MBl(O)--=M3z_(o)+ _3.L2(o)"_3(o)

where

YJ (_ " c)2 dy T dy (w - c)2 dy

M3Zl(c) JYl T (w- c)2 L T

1"1_'2(:, - e)2 tl #" fY (__ o) 2
M313 (c) = dy T dy
- - _ (w - .c)2 T

UYj j I

It is recognized that

ay

_'2(w - o)2az HI(o)
@Yl T

f l) z (-_. 0)2
j (w - c)2 ,)Yl T . 12

91



NACA TN No,

.s (_j;Therefore .,

By additional transformations, the followln C equations are obtained:

_13Co)__l(O)P(o)- Q(o)

where

lqY2 _I.yT (v c)2
dYJ j

Iy z2 (_ T- c)2

or

QCc)
_0 b

i (,,.°)2_
b3 .4b T

T (_- o)2

JO. b -
d_

The Inte@-al Q(c) is evaluated by nu_erlcal inte_ation
using Simpson's rule; P(c) is evaluated in the calculation

of _22(0).

_S

The Integral Y_ll(C), is obtained in exactly the same w_y

K!l(C) and H211(c); that is_
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i (. a 5_'P""%if(°):fo_) ?, ,,.3 _)+ a -- - 2_2 --+ -
9 9

+

(a - _)]

Flnnllyl

(5) Evaluation of N3(c):

N3(c) = lyY2 [i

( 1

_ 2] !_y(__°)2"-_o °-Y 1
_r c)2 LJYl T

F Y2 I y IN3(c) T dy _ °)2 Y2

Oyl (_- o)e JYl T UY (_" c)_

!-_ _ "_ (_- 0 c.--o)____
T

I (_'_"c)_ _TI

IMo2 Jy dy (.,_°)2
- as

(_ c) 2
i 6Yi L _-

Mo4 F y_ _yy(_-c)2 -y)T
UYl i
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It can be shown that the second and third integrals are identical;

therefore

N3(c) = N31(c) - _o%_32(0) + Mo4_3_(c)

where

(w- c)2_JYl (w- c)_ 1 OY

_y

• O Yo pY

N32(c) = N33(0) _- Jy _"_.._T dy J,v (Y2 - Y) (_- c)2I (w- c)2 z

lyY2 Iiy (w- c)2
i 1

Y2 " Y) dy

(a) The integral N34(c) is evalueted by m_ricsl integration

in a manner similar to Hl(C) H22(c) snd Mo2(c); thst is,: _ ..) • •

i i.

94
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filejiF foer o=-- T d_ _B2 dR T dnB - 2c T dqB wB dOB T d_B

N34 (c) b3. U_B L#O U_B

where.

I be I _B I b°
+ c2 T dqB dqB T d

tie Uo _'nB

The integrels %n N34(c ) are eVeluat%dby numerical integration

in a manner similar to that used in the evaluation of M32(c), and

so forth. Most of the integrals _lll already have been evaluated

in _le calculation of Hl(C), H22(0)_ and M32(c).

(b) For convenience, N32(c ) is broken do_ as follows:

_2
N32(c) = T

' 1 (w- c)2 Y (w- 0)2.dy ' T _ (Y2 - Y) dy

i

= _ ,

_ _ J_-j(,,,-o12dy_ T

9.5
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_thei_e

_32(0)= N3_I(c)÷ _322(c)- N323(c)

n321(c)- _ (_- c)2

i T

Since Y2" Yl = 1,0, and

fl 2 I _ (*- c)ep(_)_- _...m.__ay da,
(_- 0)2

W
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it is found that

N3_ (c)--P(c)-Pz(c)
J

where

_yY2 IgY2

Pz(4 : -,-_.---. d_- (_,. o)o

j (w- o)_---
(Y - Yl) dy

b

•and

Gs.(q_o): ._
T I_ Iw c2 'q d.'q

,l d,l - 2o _ ,1a.,1+ --j-.

Pl(C) is evaluated by ntvnerical integration using Simpson's rule.

Define

j (_"" °)2 _Jzz _'

Since

bly2 T(,_-0)2
,.I
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and

@Yl

it is recognized that

N3_ (°)-__12(_) l(°) _ (___ °)2

1

_B _B
_o

Ye (w- c)2

UYl

integration in em_ctly the same way as N34(c).
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The Integral N321(c) _is transformed as fol!o_:

YJ T

_Yl • • "

But

ly i_7(w-c)_

YJ
T _y _ • .__ i_lj.(o _

1 I

and

so that

_B2iCc)= (l - a)_2]iCc)- J2Li(c)

_._ere

The inte_'al J_ (c)
-ll

is evaluate& in the scme _ay as

99
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)]1 a3 aSDo ++-- + a4C _ _ + (SD o + CI
12 o _- - 4a30o a4

+ a + 6a Co - o

5

_ere

C O =

Pl

c].= 5

D
0

lO0

f
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Finally

R.P. N32(c) = R.P. N321(c) + N322(c) - N323(c)

(c) DefJmo

fY2 lyY (,,,_ 0)2
:,T_(0) : T---.-L---.dy
"_l (w- c)2 T

LlYl i

ly

UY (_"" °)2

After several transformations_ the int_l N31(c) Is brougAt

into a more convonient form

where

'yj _ _=(_,,_•o)2 |vjN3!1(c).... _ --------
['Yl (w- c)_ _Yl T Jy

Y2 D_

(0) = T _, (_ - c)2 _ T
N3! 3

j (w- c) °- t ,_. _ :_j (_:- c)_

The Integral N313(c) is evaluated by n,_nerical !ntegrstion

using S.impcon's title. Some of the inteE_rations have already beon

performed. The inte,?_a! is _v_n as

Lb '_ (w- c)2 d_ T
N33.3(c) 1 T d,_

b3 _ .iCo(_r- c)2 .4b T .!;b(',r c)2

i01
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Tq_e integral N31!(c) is evaluated in ez_ctiy the same way

as Kll(C) ; that is;

a - _ 6 _ "'i - a "Polo !) + _ f! 1 + _-F

+ cr "fo }i ___E_a3 F

3

C

L
l_ oly!) + I fl (Yl

+ ....F_+ - " ' - -a(E+F2 o_o_ 7_o 1)-7 f_ i % _o"_'l

. . . + .-f,,(=_ )

!02
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2
+ O"

2

+ Ca - o) 3
2 1

U _('_)+_ _(_)_o-_ _o(_,--y-

_o(_)_o}1.2
+

+

+- fl(Yl9
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- a - + P f°zYl_) 4

I_'i)_3_+_-__

, }3

-2_o__

].04
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4

= _,,P,('01_ !_<'-On.'OO
_-o' o-_.,,[_v_o.j-_ot _ -

LL_)] _o<%)'J/T .o(._O

o,{_n(,.o,,'(:.o_P.<:.__)l" B(,o]'i+ 'o(,,.)....: L'o(,,JJ'o'(,O-,o_;_,,3j'

1

"--"o'o'("0+._'o(,'0+s-'_'('0
,,J

' -_-'.('0

Evaluation of fk (m)

The functions fk(m)(Yl), which appear repeatedly in the

evaluation of the integrals l_l(C)_ II2(c)' _nd so forth, are

evalusted In terms of wl(k) and Tl(k) as follows:

Io5
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f ./ h
(YiJ_2+ ...

2'

, (_
=" go+"_l gl+_ 2'

}_ere

+ L77j; i _.+' ' '+

•i(='2)_._-.. ,

0<__<6

1

gl = -2goA2

g2.= -2(g_o._' + I_A2_

}

+ " " " + i'm r" m- -i)+ B

" .ro

io6
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(_) +_
= 'go Yl 2 Yl

o<_,_<_ _

i ,g (re+l) +_ T S2

%:here

2 g°S2 Yl 2 o Y!

an¢l

s J k) (k)
2 - 3 3

o&k<_.4

_(_,,, _,,_ _o) _(,_o_)= 12 go +'-T +-- T (m)
2 4 Yi•' Yl

1

.....[,(-'1]72 o _]..S4
Yl

107
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i

+--(_,_oSO-- o_. =- =--
96 _48o . Yl

\
I 1 \

where

(k) (k) (k) J- (_) 0<_<3
S3 = 3B3 - 302 - _ A4 -- =

S(k) _._ (-k) (_) (k) (k)= -_ "6 + 3B5 + 5B8 - 15c4

2o06(k)_ 5OD3(_)_ ___5E (_) 0 "__-_! _-
2 2
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s6=
2 ' 15

:39" 6°c8 + 7_4

and

3__<
--- C7 + l_C D5 - _25 E3 + F2

mm

3 ;;

Bk(m) ere defined as previously.

c2(:<):: :_3(:'-).-: B (::+.'L)
9..

c3(k)

(_) :_(_) Bs(k) (::÷:))c4 = -: .: + " _4

c5(k) I _o(k) (::) (I:_]:!.))....... _ BIO " B9

c6(k)_:_8(_).! :/::+-:)

C7 = B7

(k)
D_ = c3(k).! c2(k+:)

3

:O9 ""



_ " 4 ° --

+

(k) (_) l (!_+!)
E_ = DB .-fD_

(SDS(_:) D3(k+_i
_- (k)

- _ + D4 -

E3 "E_ .... "r2(k) : (k) _ r_'_-.__= " k--'2
° j

Order of ,,_gn,._ude of I_,_lu2_j Parts of Lu_e!u ..ls E2, M3_ and N 3

In the detailed stability calc_!atlons the contributions of

the i_%n_ry parts of the _.nte_z!s _; M,_ N3, and so forth_
2

to the function v(c) are co_L_i_ered tc be ne_li_iblo in cc_l_rison

_th the contribution of the " '_ .... _i 'nna_,.,__ pa_ of _ (c) A calcu3ation

of the orders of m_itude of I.P. H2(c), I.P. M3(c), and I.P. N3(c)

from the general erpressions _jven in the preced-ing p_ggs sho_ that

this step is Justified_ at least for _e va3m@_ of phase velocity c

that appear in the stability calcvlations.

For example,

llO

I
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where

i o(9A = --- ..... + C ÷ . , •

Ther,_fore

c3

The contribution of l.P. H2(c) to v(c) is aI_prcximatoly equal

where v ....... I,P. l_(c). The quantity in
to v° _,z(:,_ ' o

the brackets _s of +_-_eorler of O,03j at most_ in the calculations

of the present paper. (In the ..;ppro_Lmate calculations of P,ecr_in

_.i,_y_ c becomes largefor Mach nunbers very _uch ._oabor than '_ _
1

because c > 1 .... ; howover_ _ .is s_].l whon c is not much

M o

1

greater than ]..... and the res%Lts of 'the ca!ct_.atlons of P,0Crmin
Mo

Wl'C
based on _le approx?,_ation v(c) = • Z,P, c) are qual_._,,tJ.vely

T1

correct (fig. 7).)

c2

From the expression for N3(c)_ I,P. N3(c) = --- I.P. Kll(C) ,

2(wl")e

_o that the contribution of I.P. N3(c) to v(c) is appror/mnte!y

of O.Og at the most,

lll
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The imnglnary p_rt of M3(c) is considerably smaller.
fact,

In

6

and the contribution of I.P. M3(c ) to v(c) is ap_ro:dmately
U

equal to vo !_9Tl_(Wl'I'_)-___2_' The quantity _.nbrackets is of the

order of O.OO1 at maximum c.

/

112
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APP_DIX

C_IJB_IATION OF M2AN-VELOCI_Y _ID _-.T_4PF/h_T_RE DISTI_IBUTION

ACROSS BOU_DARY LAYER _%ND _ VELOCI_I k_D TL%_RATUP_g

DERIVATIVES AT TEE SOLID SURFACE

The mean-veloclty and mean-temperature p:'ofiles for the sever el

representative cases of insulated an& noninsulated m_rfaces are

calculate& by _ rapid _,,vpro'_d_,temethod that glw_,s the slope of

the velocity profiles at the stuTaco _rlth a zaq_Y_zLt_eITor of about

4 percent in the ex-tl-ezecase, for which T1 = 0.70 and Mo = 0.70.

The surface vslues of the higher velocity _.eriv,'._tlvesand the

temperature derivatives require& in the stabil'.ty calculations mre

obtained directly from the equations of mean motion in term_ of the
calculated value of the slope of the velocity profile. Th_-_Prandtl

number is taken as unity.

Mean Velocity-Temperature Distribution across Bo_un&ary L_yer

In a sominsr held at the C_lifornia Institute of Tochnolog_

in 19_2, the pros-ent author has shown that a good first appro,,d-

mation to the moan velocity distribution across the boundai-y layer

is obtained by asstm_ing that tJ_eviscosity varies linearly _,_th
the absolute te_perat_e. With tizLs asmm_ption, t2_o velocity w(_) Is

the same function of the nondlmen_ional stream __unct:l.on _ = --

as in the Blasius case, an& the corresponding distance fk-om the

surface _.= y_: ,_ is obtained by a s:L_?J.equadratt_re when _= 1.
x','-

Actually, the approximation %_) = _(_) is the first stage of an

itor_tlon process applied to the differential equations of moan

motion in the laminar boun&ary layor_ in which _ _. Tl'_ (¢ is a _%mall

parameter equal to 0.24 for air)_ and M_) = %_(_) + ew].(_)+ _w2(_) + ...

Calculation of Wl(_) for T1 = 1.50 and T1 = 2.00 for Mo---_0

showo& th_ the i _cr_ion process is rapi&ly conv_;rgent; the con-'

tribution of the second term to the Slope of the velocity profile

113



NACATN No. 136_

at the surface is 5 percent fo'__ TI= 1.50 and 8 percent for T!= 2.00.
In the present calculations the maximumerror in the slope introduced
by taking _) = ,._(_) is about 4 percent in the e_Gramecase.
(See reference 15, in which the authors makeuse of a linear
viscoslty-temperature relation. See also reference 23.)

That w(_) =___._(_) for a linear variation of viscosity _th
absolute ten_erature is seen directly from the equations of mean
motion in the laminar boundary layer. The equation of continuity
is " • i __utomat!ca ly satisfied by taking

.w

and

Po* bx_"

The stream function _* and the distance along the surface _ arc

selected as in&opon_ent variables relieving the proced'L_o of von Mises,

_ud the dynamic equation of moan motion becomes for zero press'4re

gradient

_u* b p* u*

Define the nondimenslonal stream function _ by _e relation

= _ . The dynamic equation t_kos the following form:

" _ _

1
Since p =- in the boundary !_yer, if _ = T_ the d_u_amic equation in

T

this forum _s identical __th the equation for the isothe1_nal Blasius

I14
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flow_ that is, w(_) -- _(_), or the value of the velocity ratio

is equal to the Blasius vslue at the s_me wlue of _. Tho corre-

I

sponding value of _ = _ _\'Uo* x* the non&imenslorml "distance"

from the surface_ is obtained as follows'

or

d_
pW ,-:_-

d_

__ Il_ _p'w %-
( tO

If _ = I_ the enerLy end dsTmmIc equations have n _nique inte,_al and

_l. 27 7-1"% J _'_ 2 i,,_o2`2

as shown by Crocco.

n = TI _- T1 -

_ut _(_)m _B(_)__

Therefore_

7" ] M !]_2 o - Y-_-]" M2_--" @

_T l) 7 -i= TIhB- i" 2 Mo2] _:B d_B 7 - ! 2
'.. 2 o

i15
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The integrals wB d_B and w_ d_2 are _ven in the

JO

following table, and the mean-velocity snd mean-temperature pro-
files can be calculated rapidly by this method. (The values

(_)B Re
of are used in the approzi_te calculation of

Crmln

(appendix C). )

hB

O.O0

•20
•_o
.6o
.8o

I•00
1.20

1.40

1.60
1.80

2,00
2• 20
2.40
2.60
2.80

3.00
3.2o
3.4O
3.60
3.8o
4.0o
4._
_•80

5,20
5.6O
6•o0

O. 0000
.o664
.1328
•1989
.2647
•3298
•3938

•4963

•5z_
.5748

•6298
.68z3
.729o
.7725

•8115
.8'.-_o
.876i
.9o18
.9233
•9411

•9555
.9759
.®78
.9942

.9975
•999O

O. 0000
.oo66
•0265

•0599
•I065
.166o
• 2385
• 3235
• 4210
.5302

•6508
•7'82l
.9231

i.0733

1.2319

1.3978
]-.5702
1.748o
i.9306

2.ll71

2.3067
2.6933

3.0863

3.4828

3.8812

4.28o5

flu

0.0000

•oo03
•0024

.oo81

.0189

.o367

.o63o

.0993
•1468

.2064

.2792
•3_
.4648
.5776
.7o34
.8411
•9897

i.i478
1.3145
i.4884

1.6682

2.0419
2.4280

2.8211
3.2180

3.6z67

S

0.3320

.3319

•3314

•3300
•3Z74

•3230
•3165

•3079

.2967
•2825

.2663

•2483
• 2283
.2064
• 1835
•1618

.i4o8
•ii80

.o986

.o8o5

.o640

li6
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With the al_proxlmatlon that # varles linearly _At_1the
a_solute temperatures, the. sloloeof:_eveloclty profil_ at the
solid surface is simply rQlated to the s!opo of the Blesius pro-
file. Thus

"i

since w({)-_-_%(D,

and

0_"

dw O. 332
_= "# ' : ..... b

<v I _.t

where b is the value of _ at the "ed_e"_,,of _c_hobottu@_ry layer
(_len w reaches an arbitrarily prescribed valde close to unity).

It is seen that the shear stress at the sL_face '(or the skin friction)

has the s_me value as in the B!asius case

.....lit ,-.":.
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The reliability of this appro_-/mstion can be Judgedfrom the calcula-
tions of _e skin-friction Coefficient in refersnco 24, in _ich

ocT0"76. From fi_e 2 of reference 24, t_hevalue of the skin-
friction coefficient for an insulated surface at a _.hchnumber
of 3.0 (T 1 = 2.823) is or_ly 12 percent lower than the Blasius

value and only 2 percent lower at a Mach ntmgoer of 2.0 (T 1 = 1.81).

%

For the noninsuiated surface_ %_!th TI = 0.25, the value of the

skin-frictlon coefficient at M° = 0 is only 7 percent @-ecter than

the Blasius valuo and. 12 percent greater at a M_ch number of 3.00.

Since the shear stress, at the s_arf_ce is unchanged in -:_rst
approximation; -t_n.obo{_t_'L--y-layer_,.-_,'_e,_-"-...............um bhlcl-_ess _s th_ same
value as for ths Blasius flo_r

x*

/----0.o667

The expression for the displacement thichuess 8* _dves _ measure
of the effoct of the %henml conditions at the solid svrfaco _id
the free-stre_un "'_ '_,cn number on the thickau_ss oT" the botuudary layer.
By definition;

From the relation between dD and dqB

8" _---- =

2 o

= 1.73 T1 + _.Z .-1 Mo2(0.6667)
2
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For the Bla.sit_ flow

= 1-730

The "th._claaess" of the boundary layer b is given by

7 - z Mo2(o.66_?)b.--_._ + (_l" 9 z'73+ -'-
2

and the fo1_ parameter H =
e

is

:--2.50 g_ + T---z-M 2
.L 2 o

For the insuls:ted,st,_face_
/

Calculation of Moan-V_loc::.ty and Mesn-Temper_ture Derivatives

Because of the sensitivity of t/!e stability chsracteristics of

the le/ninar bo_mdary l_yor to the beila:;ioro-.,_t_'_e quantity a-Uj

the values of the required voloclty and temperature derlvstlves at

the surface are calculated directly from _he eqt_ztions of mesn

= TTM . --= _' = bpw SOmotion_ with _ (ra= 0.75 for a_r) No-; &_

that the:d_,__mmic equation is -b -- w' : 7' . Since _(0) = (0) = O,
2

3.19
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_oro__"_I___•o <__],_o_._ot_o_
words, the value of _rl" is readily computed from the value

of _l'" In general, wl(k) is determined from the relation

2

or

h(k) I_- l)_' (_-_) (k-i): (Z_" (k-_):" -_ h +(k-3):2:_ _'l

(_.l), T = (k-s) l
+ --'-- W + . . . +

(k-!-a)_'Tz= i _
1

b ! (__)_%'+(k'2){l(k'3)_l"_t. • • g

(k-.2)' _(k-2-r)w (r+l)÷. . .+(k'3)(k-2) _ , (k-3)]+(k -2._1,,._. i 2 lh

120
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_here

_i(p)= b(m_)__'_>

F (p-l) (p<) ,

(p - i): (q)
(7- q- !):q.'_i(p-q'i) wl + . . .+ P!_%(P-i)]

p = l, 2, . 5

and

1

Pl = --
T
i

T1, '

PI' .....

TI2

2(TI')2 TI"

Dl" = -

T13 2TI

T!" (T)
_i''' : _TI' --" " 6 i' 3 Tl"'

3 4
T1 Ti T!2

(TI,)2 .TI,,
•(_;n)" m(z i) -_m

Tim TI2 TI

121



NACATNNo. 1360

Ii12_)! ! !

2)

Tin)iv

---_= (=,3)

TI') 3 TI'TI" TI '',
.....+ 3m(m- i) + m

TI 3 TI2 TI

TI ')4

---- + 6(m, 2)
TI4

(-wi')_i"m(=- i)

TI 3 TI 2 i 'TI

llf

TI! v
+ 3(T1")2 + m TI

J

Tlm

---- = (m_
], 5

Ti9
(%l')_l" (,_,2)

TI3 .

TI2

EOT "T_ ''' + 5T1 'TIIV] TIVL i " +m --.
T1

Tlm

.... = (_i_ 5) + iS(m, 4) + -____

TI6 T15 TI4

Ti3 E I'TI"TI'
"+

+

T2 0 I
i

,,,)2 + 15TI.TllV
?iv_j

+ 6TI'TI v] + m TI
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_J--_ -_(7-i)Mo2(2_"_'"+_l'_,_Iv)

vi vi
TI = S%'l -(7- l)Mo2 _O(wl'"_ + 15Wl"_liv + 6Wl'Wl v]

Each velocity derivative is determined from the knowledge of all the
prece&ing derivatives.
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(m,2) --m(m - i)(m - 2)

(m,n) ==(m-!)(=-2) . • (=-=)

m = 0,76

(m, 2) = 0._2g!76

(m, 3)=-0.50_634

(m_ 4) = 1,641!;9_

(m, 5) = -6.959939

Tl' = awl'

_ler_

7 -i
a = -----Mo 2 - (T I - I)

2

Ti" = a_i" . (_ - i);_.o_(wi')_

_i" ': awl'" " 3(7 - i)Mo_.'_i"

123
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APPENDIX C

_PrD APPR0XIMAT_0NTO TEE FL_:CTION (i - 9X)v(c)

MII_n,_._ CRITICALREYNOLDS_,_YJ_R

AND TKE

In section 5, a criterion was derived for the depende_.ce of

the minimum critical. Reynolds number P,ec_,mln on the local distri-

bution of mean velocity and mean temperature across the boundary
layer. It _ms found tl%at

6 r_c'_71-76
-- _, \ °_,t,.__--____ +

_&ere co is the value of c for _aich (i - 2k)v(c) = 0.580 and

_(c_=. ,,_Z_f_-__,3__''_]

x,,,'¢'y
x(c) : .L ,, c'Y.1) . ].

c

= - 1
C

i25
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A rapid method for the calculation of the ftu_ct!on (i - 2k)v(c)

and the minimum critical Reynoldz n_nbcr is &evolope& by making

use of the apr_ox_m2tion that the viscosity varies linearly _dth

the absolute temperature (appen&ix B). (Since the effect of

variable viscosity on the mean-velocity profile is overestimated

in this appror_mation, the values of RecrnzLu (fig. 6(a)) calcu-

lated by this method are lover than the values calculated for _= T0.76

when heat is added to the fluid through the solid surface and higher
_hen heat is _thdra_n from the fluid.)

For _ = T, the dynamic equation (appendix B) is

and therefore

T 2 _ <i
=T

But

so that

T2

_w

8_ T

• " 125
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where

7 -1

2

Finally,

v(o)= 4.

WB=C

The reqtuired,values of

table in appendix B.

_'_'_/B' nnd _ sre obtained from the

The small correction tothe slope k(c) is easily calculated

once the mean velocity profile has been obtained (appendix B).
Thus

x(c)=°'332n 1 x(o)=0
T c
i

The quantity (! - 2k)v(c) has been calculate_ as a function

of c for various vc_lues of T1 at M° O, O.(u_ 1.30_ 1.50, 2.00,

3.0Q and 5.00_ and the results of these calculations are given in

the following table. The decisive stabilizing influence of with-
ara_5.ng heat from the fluid at supersonic velocities is illustrated
in figure 7.
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T1 C o crmln

Mo=O

0.70
.8o
.9o

1.25
1.50

o.19_;5
.2G95
.3_5
.5435
•g24o

3650
lO8O
402

67
36

M° = 1.30; c > 0.231

O.9O
1.o5
i._

1.3422
1.50

0.2455
.4075
.5170
.545O
•6355

923O
392
121

92
42

Mo = 2.00; c >0.500

!.63
I.65
1.70
1.75
1.81
1.85

O.5074
.5438

.6155

.6749

.7275

.7612

671
207

75
ho
25
19

Mo = 5.00; c >o.80o

5.19
5.20
5.30
5.75
6.0625

o.8oo8
.8O36
.8262
.9008
•9j50

174
8o
23
6
3

T1 co

= o,7o

0.70
.8o
.9o

1.25
1.50

o.167o
.239O
.3265

.5425
• 6265

8_o
2110

613
74
38

Mo = 1.50; c >0.333

1.30

1.39
i._0

I.4556
1.60

o.345o 2770
.k 85 275
•5505 99
.(;276 49
.7732 16

= 3.oo; c>o.667

2.48
2.52
2.62
2.72
2.77
2.8225

o.673o z86
.7o58 59
•7655 24

.81o5 14

.8295 io

.8500 9
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APPE;,TDIXD

o'
In order to determine the effect of free-stream Mach number,

thermal conditions at the solid surface, or free-stream pressure

gradient on laminar stability, it is necessary to know the relation

between these physical parameters and the dis+_-ibution of the

dw (0 _--l_w_
across the boundary layer. The value of d__quantity

dy dy _y/

at the solid surface is obtained directly _om the ,_=amic equation
0 I

\
surface, _ich is also useful in the discussion of Laminar sta-

bility, is obtained from the _dynamic and enerTj oa_uations as
fo.llo_._:

W

'"J-'" _'fh' "_'_l" 2_'_'@_')_

TI T12 TI2 TI3

Differentiating the d_n%e,mic equation onto yields the result

TI"
,it .... + _i

Wl = - TI T_ 2 TI
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m

dT*
At the solid surface the rate of change of temperature --

dr*

an& the rate at _hich the work is &one by pressure gradient _ _

both vanish, aud the rate at which a fluid element loses heat by
conduction eqtmls the rate at which mechanical energy is transformed

into heat by viscous dissipation. The ener_7 equs_ion beco_s

or

T
1

Utilizin_ the expression for Wl'" and TI" gives

TI 1

+  )c7- 2
TI 2

where

I___{_'_] m4-1:: Tl'W l'

I 52 d_*

13o



._AC& _I No. 1360

From this expression for the following con-

1

cluslons, _qich are utilized in the stability _nn].ysls, aro reached:

T Ial

still positive.

vanishes, the quantity IS

_,_lenthe free-stre_mm velocity is uriC,form,

y--_\7/j_. --,,(l +=o(_'-l)%2
T12

+ 2(1+=)_-(_1')2
T 3

1

1; 1 '_

that is,

I_2 w'(_l]I

is al_._Us positive.

}_hen the surface is insulated,

= _(1+ =)(7- z)_%2
2

T 1 "

i--<#'4-I
gradient.

is alw_ys positive, rear&less of the presm_e

131
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-APFF_DIX E

CALCULATION OF CRITICAL MACH _,%_MBERFOR STABILIZATION

OF LAMINAR BOUNDARy LAY_

For thermal equilibrium the rate of heat conduction from the
gas to the solid surface balances the rate at which heat is radiated
from the surface. If the rate at which heat is _,,_thdrawnfrom the

fluid reaches or exceeds s certain critical value at a _olven local

supersonic _hch number# the laminar boundary-layer f].o_ is stable
at all Re3auolds ntunbers. (See section gb.) The p_tu_poseOf the

following brief calculation is to 8.etermine t_ho equilibrium surface

temperatures at several Mach munbers and compare those temperatures

with the critical temperatures for lmninar stability. (See fi_. 8.)

When the solid surface is in thermal eqtuilibritu_.

dx = _/L _ dx (i)

_fhere ¢ is the emissivity, _ is the Boltzmann constant, and the

other symbols have alreado, been defined.. (See references 14 and 15,)
Consider the case in _,_ich the free stream is uniform and the

temperattu_e is constant along the m,rface. For q = l,

_,,- To*

5

_.%e.restagnation temperature T s oq_u_is i + _' - i Me2"

].32
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Also 8w = 8_ui_li'u--°*x_0.332 if the ap_ro.xi_tion _ = T
I "o " T1

is employed. (See appendix B.) Since kl*= Cp_o*_l = Cp_o_T1,

Whenthe integr_tlons in eqtmtion (i) are carried out, the fol-
lowing relation is obtained for the deto_3natlon of the equillbri_n
surface temperature:

whore

(_oo_)6 c2_2L
K= 2._( ...... .___

c!_e Po _ _o* - l)=p_o*

The equilibrium s_face tamperat1_e under _zee-f].i_it condi-

tions is affected prlnclpallyby the variation In density _ with

altitude h. The rostt!ts of calculations ca_le_ out for alti-

tudes of 50,000 Bnd i00,000 fe_tarc given in the follo_dng table:

h M

o

50 x lO3 3.0

i00 × i03 2.0

Ts - Tlequi I
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Ln these calculations the following data are used:

¢2 = 0.50

L=2ft

T"-'_" 400° F abs.
O

= 5.80 X I0"13 Btulseclft2/(dag F abs.) 4

c = 7..73 Btu/slug/deg Y abs.
P

#o* = 3.02 × 10 -7 slugs/ft-sec

So--7-= 980 ft/sec

Do* 3.61 × l0 "4 sl_gs/ft 3 at 50_000 ft

= 3.31 × lO -5 slu4s/ft 3 at lO0,000 ft

if-- 3.35 >',I0 "4 at 50,000 ft

= 3.66 X 10-3 at i00,000 ft

Since Ts " Tlequil > Ts - Tlc r for M o " 3 st 50,000 feet

altitude an_ for M o = 2 st, 100;300 feet a].tdtu&e the laminar

boundary layer is completely stable under these conditions.

It shoulg be noted that under wind-ttmmel-tes% conditions _m

which the model is stationary, those radiatlon-conduction effects
are absent, not only because of reradiation from the valls of the

_.nd tunnel but also because the stu-face temperatures are low -

generally of the order of room temperature.
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TABLE I

AUXILIARY FUNCTIONS FOR CALCDLATING THE STABILITY OF THE LAMINAR

BOUNDARY LAYER FOR INSULATED SURFACE

c k v - L H1

Mo,, 0

E2 M 3 N3

0.0372
.O744
•1n5
.1486
.1_7
.2226
.2594
.2960
•3323
.3_2
._37
.4143

0.o0oo
•0001
.00o3
•0OO6
•o012
•o021
•0033
•O05O
.0071
.0098
•o131
•o142

o .0oo4
.oo29
•0099
.0235
.0462
.08o2
•1284
.1937
.2794
• 3896
•5286
•5767

0.0102
.0285
•o561
•o9ho
•143o
.224o
.2782
•3670
.477-1
.596O
.7418
.7904

0.522o
.4748
• 4303
• 3887
• 3499
• 3139
.28o8
• 2505
•2232
.1987
•1770
.1711

0•2889
•2740
.2590
.2433
• 2278
• 2122
.1958
•1797
.1639
•1_7
•1350
.1312

o .o689
.0604
.0530
.oh6O
•o4o3
.0350
.o3o1
.0256
.0217
.018o
.o139
.01_

o• 2999
• 3064
• 312h
• 3161
•3511
•3230
• 3217
• 3174
.3084
•2935
• 2708
.2618

MO - 0.5O

0.0362
•0723
•1o85
•1446
•18o6
•2166
•2525
• 2882
• 3237
.3588
• 3936
.k280
•4306
.4362

-0.0O00
-.0000
•0001
.0O03
.0OO7
.0O14
.0023
•0O36
.oo5h
•0076
.0103
.o137
.o1_o
.o1_

-0.00o4
-.0001

•0029
.0107
.0254
.0492
.o846
.13b,2
•2210
•2882
.h00O
.5h07
.5526
• 5794

-o.o1_
-.o234
-. 0244
-.0169
-.0003
.0260
.0627
•1]-03
•1695
•2412
.3261
•4247
,4327
.4501

O. 5122
•4671
•42h6
•38_7
•3474
•3127
.2807
•2513
.22h6
.2005
.179o
.1602
.:L589
.1560

0.2223
.2127
.2219
.19oh
.1789
.1662
.1530
.139o
.1247
.1104

•0963
.o828
.0816

.0792

0.0443
.OhOZ
.0356
.0316
• 0282
.0249
• 0217
•0188
•o158
.o128
.oo94
.o055
.oo51
.oo38

O. 1927
.2286
• 2193
• 2280
• 2366
•2422
.2425
•2406
•2333
•_79
•1914
•1444
• 1397
.1262

o .o353 -o.oo0o
.0705 -. oooo
. lO58 -. 0ooo
.1410 .0001
•1762 .0OO4
.2n 4 .0008
• 2h6b, .oo15
.2813 .OO26
.3161 .oo 39
• 35o5 .0058
•38&7 .0081
• t_185 . OlO9
.4352 .o126
.4452 .o137
•h559 .0149

-o.o0o9
-.0024
-.oo25

.o0o6

.009o

.o248

.o5o1

.0872

.1389

.2282

.2985

.4137

.b,821

.5270

.5790

Mo - 0.70

,-0.0321
-.o59o
-. o791
-. 0914
-.0951
-.0896
- .0741
-.0478
-.0098
.0412
• 1067
.1886
• 2363
.2674
.3027

0.5031
.4599
•4191
• 38o8
.3hA8
• 3113
.LuS02
.2516
•2255
•2018
.18o6
•1619
•1534
.1486
•1436

0.1839
.1786
.1721
.1652
.1569
.1478
.1379
.1_2
,i157
.1042
.o925
.o813
.o76o
.o733
.0709

o.o321
•o30o
•0279
.0257
.0233
•02O9
.o187
• o165
•o142
.oi18
.oo85
.oo52
•0030
•oo16

-.ooo2

o.I484
• 1652
.1819
.1981
• 2128
•2259
.2358
.2436
•214/o6
•2417
•2'272
.1987
•1787
• 1618
• 1575
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TABLE I - Conclude_

AUXI'LIARY FUNCTIONS FOR CA_ING THE STABILITY OF THE LAMINAR

BOUNDA!_Y LAYER FOR INSULATED Si_qFACE - Concluded

M o - 0.90

0.o334
• 0667
•i00!
•1335
•1669
.2002
.2335
.2666

.2997

.3326
•3652
• 3976
•4296
.4612

.4636

._12

O.0000
-.000!
- .0002
-.0002

-.0001
•0001
.OO06

•0012
.OO22
.O034
•0051
.OO72
.O098
.013o
.0132
.0153

-0.0015
-.0047
-.0082
-,0102

-,oo9o
-.0029
.oo98
.0312
.063h
.i086
•1697
.2496
.3518
.z_8o5

.4913

.57_

-o,0503
-,o972
-. 1389
-,1746

°.2034
-.225O
-. 2387
-. 2hh1
-.2407
-. 2281
-.2063

-.173o
-.1302
-.o78_
-.o744
-.0421

o.4816
.4422
,4049
•3696
•3365
•3054
.2765
.2497
• e_Si
.2026
•1823
.164i
•1480

.1340

.1330
•1261

o.13o3
.1t_98
.1281
,1253

.1213
,i163

.1103

.1030

.0947

.o855

.0759

.o656

.056o
,oh6h

,0463
.o4z8

O.0180
•0189
.o18_
.o182
.0175
.0166

.0157

.0143

.o128
•OllO

.o09o

.oo60

.0o21

-.0036
-.oo4o

-.oo76

o.09o8
•1133
.1366

.1994

.1825
•2059

•2252
.2439
.2597
.2703
.2674
.2515
.2185
.1431

.1373

.1004

M 0 :,i.i0

0.099o
.1320
.1650
.1980

.2309

.2638

.2865
,3292
.3616

,3938
.4246
._972
.4836
.510_

-0,0003
-.ooO4
- .ooo5
-.ooo

-.ooo2
•00o2

•0009
• oo18
.oo31
.oo49
.0o97
.o098
.o126
. o16o

-o .OlhO
- .O206

-.0255
- .0272
-.0232
-.01_5
•0072
.o382
•0829
•1442

,2247

. .)300
•4_©7
• 5789

-o. 2037
-. 263o
-. 3166
-, 3614O
-. ho_9
-.4396
-, 4680
-.49o6
-.5086
-.5239
-.5516
-.5675
-.6112
-. 6875

0.4026
,3682
.3358
•3054
.2770
.2506

.2263
,2040
.1837
.1655
.1498
1390
.1245

.i151

•, 1.30

o.o673
.0686
•0683
.o667
• 0632
.o581
.0516

,0431
.0333
.0218
.0081

-.0O6O

-.0203
-.0360

O.0012
.0038
.0051
.0058
•0064
•OO62
•0058
•OO47
.0031

.OO09
-.0032
-•OO87

-.0157
-. 0230

o. 08o6
io68

• i319
•1598
• 1864
.2101

•2293
•2416
•2454
.2310
•1834
0764

- O737
-. 2366

0.2541
.2858
.3173
.3488
.3800
,4111
.4418
.4721

.5O20

.5072

.5416

-0.0008

-.OO05
.0001

•oOO9
•oo21
.oo37
.0057
.0083
•0114
•0120

.0167

-0.0561
-.05o5
-.o364
-.0117

.0258

.O79O

.15o8

.2449

.3652
•3893
•5777

-0.5982
-.6508
-.6987
-.7430
-,7856
-.83o0

-.8834
-.9608

-1.09W
-1.1334
-1.3074

o. 2487
.2255
.2041
• 1845
.1667
• 1.507
.1366
.1242
.1136
.1n9
.1020

0.024_
.0233
,0183
•01o9
.OO19

-. OO99
-.o236
-.o4o4
-. 0628
-.o671
-.o834

0.0003
•0016
.o014
.ooo3

- .0016
-.OOh8

-.OO�O
-.o169
-.0294
-.0324
-:0549

0.2200
.241_
.2644
.2742
.270O
.2285
.1184

-.o818

-._943
-.5971

-1.5080
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TABLE II

AUXITJARY FUNCTIORS _ CAIEUIA_ THE STABILITT OF TKE

IAMIRAR BOUmX_ IAYXR _ NONIR_CIATZD SUI_AOI

c x . , Hz _ '% I'3

M o - 0.70; T1 = 0.70

0.0262

.0521
•0777
•1030
•1281
•1529
.1701
•1726

0.0096
.0112.
.o166
.02"20
.027&

.0327

.o365

.0370

o.o825
•16_5
.2&66

•3297
.bib6

.5o23

.5661

.575b

0 .O635
.o9_9
•I18_
.I_O0

.1632

.190_

.2130

.2163

O.6102
.5725
.5367
.5026
.h7o3
•h396
.hl�l
.h16e

0.3272
.3157
.30_5
.Z936
•2828

.272&

.2651

.2662

0.052_
.05o2
.0681

.ow_

.0&33

.0_IZ

.o39_

.039h

.2920

.3081

.3233
•3380
•3519
•3610
.3623

O .0237
.0h72
.O7O5
.O937
•1168

.1397
•1625
.1851
._075
..z198
.2_O9
•2h75

0.0h33
.0863

•1291
•171g

.9135

.2551

.2963

.3166

.3268

0.0033
.0066
.0099
.0132
.016_

.0197

.o23o

.o263

.0297

.0331

.o3h9

.0359

M O = 0.70; TI " 0.80

0.0_86 0.5951.
.0965
.lk_3
.1_5
.2_17
.2916

.31.57

.11017

.1.611.

.5153

.559_

.5801

0.0279

.0371.

.01.30

.0k82

.0550

.o6h9

.o789

.o982

.1236

.1562

.175_

.1877

.5620

.5300

._991.

.1.701

.1.h20

._152
•3897
•3651,
.3_21.
.3313
•321.8

0.2811

.2737

.2663

.2590

.251&

.2h39

.2363
•_87
.2210

.2133

.2094

.2071

0.01.93
.0h75
.01.57
.0_37
.0_17

.0397

.0378

.0359
•0339
.0321
.o31o
•0303

0.0036
.0072
•0108

.011.5

.o185

.0_

.O271.

.0299

.03_2

o.o517
.lO28

•1568

.2173

.2885
•371,6
.1,8o5
.5ho6
.5762

MO - 0.70; TI - 0.90

0.0051 0.55O6
-.00_7 •_939
-.0111 . _,1.1_-
-.o079 .3930
.0096 .3_85
•o1.62 .3080

.lO73 .2715
•11.89 .25_7
•1776 .2_66

.230&

.2191

.207_

._25

.1698

._37

.1606

o .o1.35
.OhOl_

.o37o

.o337

.o3o_

.0272

.02&O

.OL:_,

.0217

O, 1369
•15o_
•1635
•1763
•1882
._01
.2110
.2"_13
.2311
.2_0

.2&_3

.2_65

o.I_16

•1638
.18_6

.2032

.1203

.2339

.2_62

.2517

.25_i

Mo = 0.70; T 1 - 1.25

0.03_
.06_
._

.1389
•1738
.20_

.2h39
.2_9
.3138
.3_5
.3831

.1.5_

._6

.50_

.5_

-0.oo16

-.0o32
-.o0_8

-.0062
-.0o76
-.OO87
- .0095
-.0101

- •0103
-.OIO0
-.oo
-.0079
-.O059
-.0031
-.0006
.0OO6

-0.0237
-.01.76

-.o698
-.0886
-.10_1
-.1085

-.1057
-•0917
-.o61.1

-.0203
.0_27
•L_86
•11*i_
•3859
•5181,
• 5779

-o.0h76
-.o797
-.1013
-.1132
-.1155
-.lO81

-.0912
- .o61.5
-.0281

.0179

.073_

.1373

.2071

.27?0

.32_

.33k9

0.5100
.k678
._276
.3896
.3538
.3202
.2888

.2597

.2330

.2086

•1865
.1668
•I&95
.131.5
.12_8

•1_12

0.1750
.171o
.1661
•1600

•1529
•11._8

.1351.
•121.9
.1133
.lOO8
.0870
.0728
.o582
.0_27
.031_
.0269

o.o32b
.0310
.o29_
.O272
.O251
.0228
.0208

.0185

.0161

•o139
.o113
.0083
.ook2

-.001o
- .oo67
-.0091

o.11.62

.1631.

._94

.1956

.21_

._38

.231.2

.2_2

.2_9

._69
.1616
._16

-.o_1
-.Lye2
-._
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TABL_ lIT

PK_%_EVELOCITY, %'AVE_AND REYNOLDS NUMBER FOR _ _NIC

DIST_C_ (STABILrTY LDaTS) FO_ ZmSt_T_D StP_AC_

r

c c_ R _ Re

Mo - 0

u.O372

•071*h
•1115
•11.66

•1857
•2226

•_9_
•2960
•3323
.3682
.no37
•h143

•4143
._o_7
•3682

• _9_

0.0362
• 0723
•1o85

• 18o6
.2166

• 2882
.3237
• 3588
•3936
.1.28o
• h'%o6
_362

• h.362
•1.3o6
• 4280
39_6

• 35_
-3237
• 2_2

0,0353
•0709

.1058
.lhlO

.1762

.211&

.2464
•#813
•3161

•3505
.38k7
,hlS5

,4352

.4559

.h559

.4452

._359

.n185

.28_7

.35o5

.n61

0.0321
•0685
•IiO 3
•1585
• 2t_
.2ac_3
• 3590
._-535
•5707
.7243
._89

i.0770
i.27_0
1.294o
1.1S6o
I.o_o0

•8728
•7177

25,500,000
1,500,000

Z[8,000
83,000

32,600
I_,8O0

7,700
);,&20

2,76O
1,850
I,360
1,280
1,530
1,880

3,5_0
6,7i0

13,300
27,500

o.o038
•0082

•0131
.o189
•0255
•o3_,_

•o1.27
•o5_0
•o679
.0862
•1142
•1282

•1515
•15_0
• lk2_.
.1238
•lO39
•0851.

3,030,000
178,O00

33,100
9,88O
3,88O

1,760

917
526
329

162

153
182

_23
421

799

1,580
3,_70

o.o_i
.o538
.o868
.125o
•1695
•2216

.28_
•3556
•4442
•55h9
.6993

..9301

.9558
1.0140

1.i&30
i.2]..5O
i.2150
I.121,.o

-97£8
• 8272
• 6869

Me = 0.50

36,6o0,oo0

2,13o,ooo
39'2,000
116,000

kh,500
20,200

10,_00
5,850
3,570
2,330
1,630

1,230
1,2t_O
1,190
I,_i0

1,580
1,66o
3,080
5,670
10,800

21,100

0.o0_9
.0063
.01(31
01_6

.o19S
,0258
.o33o
.O_;lk
.o518
,o6_7
.o815
,lO8_
.n14
.i18_

.138h

.1416

.ih16

,1310
.ii_I

.096_

.0800

I_,u_O,OO0
248,O00
45,700

13,500
5,190
2,360
1,210
682
416

272

11,2
139
161.

19_
359

1,260

2,h60

Mo - 0.70

o.o191
.0415
•0677
• o98h
•1344
•1766
•2268
• 2857
•3570
•_433
• %m19
•6951
•7917
• 8655
• 97o_

i.1230
I. i_90

i.1930
I.072O

•9781
•7965
•66_9

53,_0,000
3,06O,0O0
555,000
161,000
61, i00

27,300
_3,BOO
7,630
t,, 5.50
2,900
1,960
I,4_0

1,230
1,160
I,ii0

I,330
i,650
1,9_0

2,670
4,810

8,880
16,70.0

0.00-----_
.O047
.0077
.011_

,015_
.0902

O259
.0326
.o_8
.o506
.0630
.0794
.09o_

11o8
.1283
13oh

.1283

.io7_

.o910
• 0761

6,I00,000
3_9,¢00
63,_00
18, bOO
6,98O
3,1'20
1,580
872

520
331

162
141

132
127
152

2_7

305
550

1,010

I,910
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TABLE IYI - Concl_ded

PHASE VELOCITY_WAVE NI_MBER, AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC DISTURBANCE

(STABILITY LIMITS) FOR INSULaTeD SURFAC_ - Concluded

c _ R _e Re

M o = 0•90

0.0334

•0667

•I0OI

.1335
• 1669

•2002

.2335

•2666
.2997
.3326

• 3652
• 3976

_296
• _612

•4636

• _817_

• _812

•4636

•4612

•_296
• 3976

• 3692

.3326

0.0107

.o248

.oa21

.o632

.o885
,11_
.1540
.1961
.2h59

.3o53

•3777

5638

.7396

•881o

i.o13o
1.0120

1.0070

.9027

.7823

.66k2

,5523

iii, 000,000

5,96o,0oo
1,030,000

290,000

106,000

46,000

2'2,600

12, I00

7,0_0

4,320

2,820

i, 950

i, hlO

1,09 °

1,080

i, 010

i, 230
1,740

1,820

3,180

5,590

9,91_o

18, 900

0 0012

.0028

.OOh8

•0o72
•0101

•o135

.0175
• 0223
•0280

.o3h8
•ot_3o

•0529

.o653
•0827
.08_3

•ZOO_.

• 1154

•n53

• 1148

•lO29
.o892
•0757
•0629

12,600,000

679,000

i!7,000

33,000

12, i00

5,240

2,570

1,_
h92

321

2_

161

125

123

I15

140
199
2o7
363

637

1,130

2,10¢

o. 099o
.1320
• 165o

• 198o

• 2309

• 2638
• _61

.3292

,3616
• 3938
• 4246

.4572

._836

• 510_

•5104

._836

./_5.72

•4246

• 3938

O. 25_1

,2858
• 3173
•348_
• 3800

klll

•4_18

• 4721

• 5O20

•5072
•5416

.5416
•5072

.5020

4721
•4418

M O = ii0

0.0086

•0268
•o 468

.o7o7

- o991
.1329
• 1727
.2200

.2755

.3417

.4159

•5193
.6268

.801o

• 9165

.39_

.8o23

.6785

.5766

5,730,000

769,o0o
224,000

85,000

38, 300

19,300

i0,600

6,260

3,920
2,610

1,850

i, 350

i, I00

991

1,220

2,060

3,320

5,930

I0, kO0

_o = 1.3o

0.0009

.0029
•oo50
•oo76
• OlO7

o143

•o186

.0237

• 0297
.o368
•o_-48

•0560

•0676

.086_

.O988

•0962

•0865
•0732
•0622

618,000

82,900

24,100

9,160

4,130

2,080

1,140

675

423
281

199
146

119

107

223

39

i, 1'2_

o.0451

.0818

.1202

.1636

.2132

.27o7

.3377

.4166

.5123

.5316

.7582

•8931

.7781

.7592

.6458

.5h01

63,800

24,800

12,300

6,990

4,280

2,800

1,930

i, 420

i,ii0

1,_
1,080

2,310

2,550

4,500

7,._

0, OOh7

• oo85

• 0125

•0170

.0222

•0281

.o351

.o433

.o532

•0552

•0788

•0928
.o8o9

•0789

•o671
•o561

6,630

2,570

1,280

726
445

291

201

147

115

iii

92

112

241

265
468
829

NATIONAL .%DVI SORY
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TABLE IV

_HASE VELOCITY, NAVE NUMBER, AND REYNOLDS NUMBER FOR NEUTRAL

SUBSONIC DISTURBANCE (STABILITY L]_4_TS) FOR NONINSULATED SURFACES

c i" _ R _e Re

Mo ,,0.70; TI ,,0.70

o. 0262

.0521

.0777
•1030
•1281

.1529

.1701

.1726
•1726

•i701
•1529
•1281

.]o3o
.0777
•0521

0.0339
•0734
•i188

.1708

•2308

.3030
•367O

•3777
•4986

•4977

• 4732
.4175
• 3460
.2620

•17i3

82, bOO, 000

5,360,000

I,Ii0,000
371,000

161,000

83,_0
57,200
54, 40o

69,000

73,900
121,000
270,000
711,000

2,500,000
14,600,000

0 0041

.0088

.o143

.o2o5

.0277

.o%4
•O441

.0454

.o599

.o598
•0568
.0502
.o416

.0315
•o206

9,900,000
644,000

133,000
44,600

19,300

i0,000
6,870
6,540
8,280

8,870

14,500
32,400

85,_)0
300,000

I,750,000

M O ,,0.70; TI m 0.80

0.0237
•0h72
.0705
•0937
•1168

. i_97

.1625
•1851
•2075
• 2298
.2409

.24-75
•2475

•2_09
.2298

.2075
.1851
.1625

.1397
•]_168

.o937
•o7o5

O. 0237
•050]_-
.0804
• 1138
.1509
•1923
.2382
• 2908
.351o
.4237
._668
• 4962
•6308

.6233

.6o56
•5609

.5o62
•_465
.3827
• 3164
•2489
• 1822

157,000,000

9,910,000

1,970,000
633,o0o
263,000

129,000

70,900
42,600

27,500
18,800

15,90o

14,500
18,500

21,400

27,200
4_,9o0
77,400

141,000
280,000

630,000
1,690,000

5,890,000

o. 0028
•0059
.0094

.0133
•0176
•0224
.0278

.0339

.o409

.0494

.0544

.o578

.0735
•0726
•0706
0654

•O590
.o520
.o446

.0369

.029o
•0212

18,300,000

i,150,000
230,000

73,700
30,600

15,000
8,260
2,960

3,200

2,190
1,860
1,690

2,160

2,500
3,170

5,_30
9,010

16,1_00
32,600

73,400

197,000
686,00o

NATI01_AL ADVISORY
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TABLE IV - Concluded

PHASE VELOCITY, %TAVENUMBER, AND REYNOLDSNEMBERFOR

NEUTRAL SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR

NONINSULATEDSURFACES - Concluded

0.0433
.0863
•1291
.1714
•2135
•2551
•2963
•3166
•3268
• 3268
• 3166
•2963
•2551
•2135
•1714
•1291
.0863

cr,

%. 0.70; T1 . 0.90

17,100,0o0 o.o042
.o815 l,OhO,OOO .0092
•1353 200,000 .o153
.1996 62,500 •0226
.2775 25,500 .o314
.3728 12,400 .0422
.4980 6,970 .0563
.5814 5,520 .0658
.6347 4,990 .0718
.7817 6,500 .0884
.7701 7,920 .0871
.7307 11,600 .0827
.6275 25,200 .0710
.5133 60,300 .o581
.3972 170,000 0449
.2858 617,000 .0323
.1793 3.740,000 .0203

o•o368

MO :"0.70; T1 = 1.25

R8

i,930,000
118,000
22,700
7.070
2,88o
i,410
789
624
565
735
895

i,310
2,850
6,820
19,200
69,800
423,000

0.0346
_0692
.lOhO
.1389
•1738
.2088
.2439
.2789
.3138
.3485
.3831
,4174
.4512
.h846
.5092
.5Z90
,5190
.5092

.4512

.4174

o ol6o
.o3b6
•0564
•o819
.112o
•1477
•1899
•24O3
•3O02
•3722
•4594
•5668
•7o61
•9o67

1.18oo
I.448o
1.588o
I. 7250
1. 5370
1.2580
1.o33o

78,800,000
4,380,000
770,000
217,ooo
78,900
34 000
16 5o0

8,830
5,070
3,ii0
2,020
1,380
1,000
760
6_3
615
64O
806

l,390
2,740
5,360

o.ool6
.oo36
.0058
.0084
.0115
.Ol52
.Ol95
.o247
•o 308
.0382
.O47l
.0582
.o7_
.O93Z
1211
.1486
163o
.1770
.1577
.it_i
.io6c

8,090,000
450,000
79,000
22,200
8,100
3,490
i,700

907
520
319
207
142
103
78
66
63
66
83
142
28l
550

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS



Fig. 1 NACA TN No. 1860
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Figure I.- Boundary-layer velocity profiles for insulated surface.
Since G is taken equal to unity, the temperature profile is

[_iven by T -- T1 - TI " 0 + _q- MO " - T

i



NACA TN No. 1360 Fig. 2

Io0

.9

.8

.7

.6

°5

°4

,3

.2

.i

0 I 2 3 4 5 6

Figure 2.- Boundary-layer velocity profiles for noninsulated

surface. M o = 0.70. T1 is the ratio of surface temperature
(deg abe.) to free-stream temperature (deg abe.). Inflection

more pronounced and farther out into fluid for T1 = 1.25

than for insulated surface (T1 = I.i0). No inflection for
Tl = 0.70, 0._O, 0.90.



Fig. 3a NACA TN No. 1360
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(1 - 2_)v • 0.580 ( _ is small) is a memmzre of the
stability of a given laminar boundary-layer flow.
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NACA TN No. 1360 Fig. 3b
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Fig. 4a NACA TN No. 1360
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Fig. 4c NACA TN No. 1360
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NACA TN No. 1360 Fig. 4d
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Fig. 4e NACA TN No. 1360

s o o

8

=

i±:

4-

_.t ii

2' . :

I :

- i- f--

-b- t-

,..4

o

I!

0

m

• 4)

o

,el



/

NACA TN No. 1360 Fig. 4f
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Fig. 4g NACA TN No. 1360
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Fig. 4i
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Fig. 4k NACA TN No. 1360
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Fig. 5 NACA TN No. 1360
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Figuro 5.- Variation of minimum critical Roynolds number
with _aoh numbor for lemtnar boundary-layer flow.
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NACA TN No. 1360 Fig. 6a
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NATIONAL ADVISORY

COMMITTEE FORAERONAUTICS

Tlgure 6.- Dependence of minimum erltloal Reynolds number

on thermal oondltlons at solid surface. M o : 0.70.

T 1 is the ratio of surface temperature (deg abe.} to

free-stream temperature (deg abe.).



Fig. 6b NACA TN No. 1360
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Figure 6.- Concluded.
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Figure 7.- Stabilising effect at supersonic Mach numbers of
wlthdra_al of heat from fluid through solid surface. At

each value of M o > i, there is a erlt_cal value of Tl = Tl

such that for T 1 _ YIc r the laminar boundary-layer flow is or

stable at all values of the Reynolds number. (Curves for

M ° = O and M o = 0.70 Included for comparison.) R@crmln
estimated from equation (5.8}./-c_Y; _ = I.
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Figure $.- _rltlcal temperature _atio Tlo r for

stability of laminar boundary laye_ against

Maoh number N o. Ts is the ratio of stagnation

temperature (deg abs.) to free-stream tewperature

(deg abs.) = 1 + _-I No2 for G = i.
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